akseljoonas HF Staff commited on
Commit
4a396b1
·
verified ·
1 Parent(s): 0820994

Model save

Browse files
README.md ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-3B-Instruct
3
+ library_name: transformers
4
+ model_name: Agentic-Qwen-3B-e2-lr5-b8
5
+ tags:
6
+ - generated_from_trainer
7
+ - trl
8
+ - sft
9
+ licence: license
10
+ ---
11
+
12
+ # Model Card for Agentic-Qwen-3B-e2-lr5-b8
13
+
14
+ This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct).
15
+ It has been trained using [TRL](https://github.com/huggingface/trl).
16
+
17
+ ## Quick start
18
+
19
+ ```python
20
+ from transformers import pipeline
21
+
22
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
+ generator = pipeline("text-generation", model="akseljoonas/Agentic-Qwen-3B-e2-lr5-b8", device="cuda")
24
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
+ print(output["generated_text"])
26
+ ```
27
+
28
+ ## Training procedure
29
+
30
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/akseljoonas-university-of-groningen/huggingface/runs/w3hmoma8)
31
+
32
+
33
+ This model was trained with SFT.
34
+
35
+ ### Framework versions
36
+
37
+ - TRL: 0.16.0
38
+ - Transformers: 4.52.4
39
+ - Pytorch: 2.6.0
40
+ - Datasets: 3.6.0
41
+ - Tokenizers: 0.21.1
42
+
43
+ ## Citations
44
+
45
+
46
+
47
+ Cite TRL as:
48
+
49
+ ```bibtex
50
+ @misc{vonwerra2022trl,
51
+ title = {{TRL: Transformer Reinforcement Learning}},
52
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
53
+ year = 2020,
54
+ journal = {GitHub repository},
55
+ publisher = {GitHub},
56
+ howpublished = {\url{https://github.com/huggingface/trl}}
57
+ }
58
+ ```
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 30554840104960.0,
3
+ "train_loss": 0.4982214890309234,
4
+ "train_runtime": 327.6119,
5
+ "train_samples": 1845,
6
+ "train_samples_per_second": 3.242,
7
+ "train_steps_per_second": 0.409
8
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.52.4"
14
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 30554840104960.0,
3
+ "train_loss": 0.4982214890309234,
4
+ "train_runtime": 327.6119,
5
+ "train_samples": 1845,
6
+ "train_samples_per_second": 3.242,
7
+ "train_steps_per_second": 0.409
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,279 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 2.0,
6
+ "eval_steps": 500,
7
+ "global_step": 134,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.07462686567164178,
14
+ "grad_norm": 1.097984505829403,
15
+ "learning_rate": 1.4285714285714285e-05,
16
+ "loss": 1.0711,
17
+ "mean_token_accuracy": 0.7844904899597168,
18
+ "num_tokens": 808107.0,
19
+ "step": 5
20
+ },
21
+ {
22
+ "epoch": 0.14925373134328357,
23
+ "grad_norm": 0.5592347657844529,
24
+ "learning_rate": 3.2142857142857144e-05,
25
+ "loss": 0.7776,
26
+ "mean_token_accuracy": 0.8252509593963623,
27
+ "num_tokens": 1609080.0,
28
+ "step": 10
29
+ },
30
+ {
31
+ "epoch": 0.22388059701492538,
32
+ "grad_norm": 2.3311733604872757,
33
+ "learning_rate": 5e-05,
34
+ "loss": 0.6944,
35
+ "mean_token_accuracy": 0.8515042781829834,
36
+ "num_tokens": 2364819.0,
37
+ "step": 15
38
+ },
39
+ {
40
+ "epoch": 0.29850746268656714,
41
+ "grad_norm": 0.539840904336575,
42
+ "learning_rate": 4.791666666666667e-05,
43
+ "loss": 0.5766,
44
+ "mean_token_accuracy": 0.8671263098716736,
45
+ "num_tokens": 3137298.0,
46
+ "step": 20
47
+ },
48
+ {
49
+ "epoch": 0.373134328358209,
50
+ "grad_norm": 0.41546864000168066,
51
+ "learning_rate": 4.5833333333333334e-05,
52
+ "loss": 0.5163,
53
+ "mean_token_accuracy": 0.8827684998512269,
54
+ "num_tokens": 3905642.0,
55
+ "step": 25
56
+ },
57
+ {
58
+ "epoch": 0.44776119402985076,
59
+ "grad_norm": 0.353169354176409,
60
+ "learning_rate": 4.375e-05,
61
+ "loss": 0.5541,
62
+ "mean_token_accuracy": 0.8705575823783874,
63
+ "num_tokens": 4698822.0,
64
+ "step": 30
65
+ },
66
+ {
67
+ "epoch": 0.5223880597014925,
68
+ "grad_norm": 0.3367736704335482,
69
+ "learning_rate": 4.166666666666667e-05,
70
+ "loss": 0.5299,
71
+ "mean_token_accuracy": 0.8778650641441346,
72
+ "num_tokens": 5502368.0,
73
+ "step": 35
74
+ },
75
+ {
76
+ "epoch": 0.5970149253731343,
77
+ "grad_norm": 0.32014959900195933,
78
+ "learning_rate": 3.958333333333333e-05,
79
+ "loss": 0.4523,
80
+ "mean_token_accuracy": 0.9003850221633911,
81
+ "num_tokens": 6264696.0,
82
+ "step": 40
83
+ },
84
+ {
85
+ "epoch": 0.6716417910447762,
86
+ "grad_norm": 0.3766002391001425,
87
+ "learning_rate": 3.7500000000000003e-05,
88
+ "loss": 0.5118,
89
+ "mean_token_accuracy": 0.8829670548439026,
90
+ "num_tokens": 7073616.0,
91
+ "step": 45
92
+ },
93
+ {
94
+ "epoch": 0.746268656716418,
95
+ "grad_norm": 0.34901853331777233,
96
+ "learning_rate": 3.541666666666667e-05,
97
+ "loss": 0.6568,
98
+ "mean_token_accuracy": 0.8654794096946716,
99
+ "num_tokens": 7870867.0,
100
+ "step": 50
101
+ },
102
+ {
103
+ "epoch": 0.8208955223880597,
104
+ "grad_norm": 0.41496433526889975,
105
+ "learning_rate": 3.3333333333333335e-05,
106
+ "loss": 0.5018,
107
+ "mean_token_accuracy": 0.879916000366211,
108
+ "num_tokens": 8654369.0,
109
+ "step": 55
110
+ },
111
+ {
112
+ "epoch": 0.8955223880597015,
113
+ "grad_norm": 0.35710466457229734,
114
+ "learning_rate": 3.125e-05,
115
+ "loss": 0.4922,
116
+ "mean_token_accuracy": 0.8849031329154968,
117
+ "num_tokens": 9406298.0,
118
+ "step": 60
119
+ },
120
+ {
121
+ "epoch": 0.9701492537313433,
122
+ "grad_norm": 0.2759798405972834,
123
+ "learning_rate": 2.916666666666667e-05,
124
+ "loss": 0.5385,
125
+ "mean_token_accuracy": 0.8858557939529419,
126
+ "num_tokens": 10223729.0,
127
+ "step": 65
128
+ },
129
+ {
130
+ "epoch": 1.044776119402985,
131
+ "grad_norm": 0.37990993169333426,
132
+ "learning_rate": 2.7083333333333332e-05,
133
+ "loss": 0.4201,
134
+ "mean_token_accuracy": 0.9078471302986145,
135
+ "num_tokens": 10899620.0,
136
+ "step": 70
137
+ },
138
+ {
139
+ "epoch": 1.1194029850746268,
140
+ "grad_norm": 0.2768802930431144,
141
+ "learning_rate": 2.5e-05,
142
+ "loss": 0.4874,
143
+ "mean_token_accuracy": 0.8900921702384949,
144
+ "num_tokens": 11673700.0,
145
+ "step": 75
146
+ },
147
+ {
148
+ "epoch": 1.1940298507462686,
149
+ "grad_norm": 0.3118601164754786,
150
+ "learning_rate": 2.2916666666666667e-05,
151
+ "loss": 0.4586,
152
+ "mean_token_accuracy": 0.8888717889785767,
153
+ "num_tokens": 12471762.0,
154
+ "step": 80
155
+ },
156
+ {
157
+ "epoch": 1.2686567164179103,
158
+ "grad_norm": 3.127142887640936,
159
+ "learning_rate": 2.0833333333333336e-05,
160
+ "loss": 0.3011,
161
+ "mean_token_accuracy": 0.9234537720680237,
162
+ "num_tokens": 13235430.0,
163
+ "step": 85
164
+ },
165
+ {
166
+ "epoch": 1.3432835820895521,
167
+ "grad_norm": 0.28349474176463113,
168
+ "learning_rate": 1.8750000000000002e-05,
169
+ "loss": 0.355,
170
+ "mean_token_accuracy": 0.9111138224601746,
171
+ "num_tokens": 14035158.0,
172
+ "step": 90
173
+ },
174
+ {
175
+ "epoch": 1.417910447761194,
176
+ "grad_norm": 0.4656290158665034,
177
+ "learning_rate": 1.6666666666666667e-05,
178
+ "loss": 0.3988,
179
+ "mean_token_accuracy": 0.9019946575164794,
180
+ "num_tokens": 14818394.0,
181
+ "step": 95
182
+ },
183
+ {
184
+ "epoch": 1.4925373134328357,
185
+ "grad_norm": 0.35912081575893856,
186
+ "learning_rate": 1.4583333333333335e-05,
187
+ "loss": 0.3618,
188
+ "mean_token_accuracy": 0.9122716307640075,
189
+ "num_tokens": 15598792.0,
190
+ "step": 100
191
+ },
192
+ {
193
+ "epoch": 1.5671641791044775,
194
+ "grad_norm": 0.30779204946938893,
195
+ "learning_rate": 1.25e-05,
196
+ "loss": 0.3203,
197
+ "mean_token_accuracy": 0.9191259384155274,
198
+ "num_tokens": 16383948.0,
199
+ "step": 105
200
+ },
201
+ {
202
+ "epoch": 1.6417910447761193,
203
+ "grad_norm": 1.0451064339674097,
204
+ "learning_rate": 1.0416666666666668e-05,
205
+ "loss": 0.457,
206
+ "mean_token_accuracy": 0.8926056742668151,
207
+ "num_tokens": 17148084.0,
208
+ "step": 110
209
+ },
210
+ {
211
+ "epoch": 1.716417910447761,
212
+ "grad_norm": 0.3071303378120666,
213
+ "learning_rate": 8.333333333333334e-06,
214
+ "loss": 0.3756,
215
+ "mean_token_accuracy": 0.908941102027893,
216
+ "num_tokens": 17951763.0,
217
+ "step": 115
218
+ },
219
+ {
220
+ "epoch": 1.7910447761194028,
221
+ "grad_norm": 0.30659106999758134,
222
+ "learning_rate": 6.25e-06,
223
+ "loss": 0.4142,
224
+ "mean_token_accuracy": 0.9020455718040467,
225
+ "num_tokens": 18763975.0,
226
+ "step": 120
227
+ },
228
+ {
229
+ "epoch": 1.8656716417910446,
230
+ "grad_norm": 0.5796181274690525,
231
+ "learning_rate": 4.166666666666667e-06,
232
+ "loss": 0.4989,
233
+ "mean_token_accuracy": 0.8861546277999878,
234
+ "num_tokens": 19532240.0,
235
+ "step": 125
236
+ },
237
+ {
238
+ "epoch": 1.9402985074626866,
239
+ "grad_norm": 0.3415301126393925,
240
+ "learning_rate": 2.0833333333333334e-06,
241
+ "loss": 0.3847,
242
+ "mean_token_accuracy": 0.9057931303977966,
243
+ "num_tokens": 20314776.0,
244
+ "step": 130
245
+ },
246
+ {
247
+ "epoch": 2.0,
248
+ "mean_token_accuracy": 0.9028400182723999,
249
+ "num_tokens": 20867736.0,
250
+ "step": 134,
251
+ "total_flos": 30554840104960.0,
252
+ "train_loss": 0.4982214890309234,
253
+ "train_runtime": 327.6119,
254
+ "train_samples_per_second": 3.242,
255
+ "train_steps_per_second": 0.409
256
+ }
257
+ ],
258
+ "logging_steps": 5,
259
+ "max_steps": 134,
260
+ "num_input_tokens_seen": 0,
261
+ "num_train_epochs": 2,
262
+ "save_steps": 500,
263
+ "stateful_callbacks": {
264
+ "TrainerControl": {
265
+ "args": {
266
+ "should_epoch_stop": false,
267
+ "should_evaluate": false,
268
+ "should_log": false,
269
+ "should_save": true,
270
+ "should_training_stop": true
271
+ },
272
+ "attributes": {}
273
+ }
274
+ },
275
+ "total_flos": 30554840104960.0,
276
+ "train_batch_size": 1,
277
+ "trial_name": null,
278
+ "trial_params": null
279
+ }