Model save
Browse files- README.md +58 -0
- all_results.json +8 -0
- generation_config.json +14 -0
- train_results.json +8 -0
- trainer_state.json +279 -0
README.md
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: Qwen/Qwen2.5-3B-Instruct
|
3 |
+
library_name: transformers
|
4 |
+
model_name: Agentic-Qwen-3B-e2-lr5-b8
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
- trl
|
8 |
+
- sft
|
9 |
+
licence: license
|
10 |
+
---
|
11 |
+
|
12 |
+
# Model Card for Agentic-Qwen-3B-e2-lr5-b8
|
13 |
+
|
14 |
+
This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct).
|
15 |
+
It has been trained using [TRL](https://github.com/huggingface/trl).
|
16 |
+
|
17 |
+
## Quick start
|
18 |
+
|
19 |
+
```python
|
20 |
+
from transformers import pipeline
|
21 |
+
|
22 |
+
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
|
23 |
+
generator = pipeline("text-generation", model="akseljoonas/Agentic-Qwen-3B-e2-lr5-b8", device="cuda")
|
24 |
+
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
|
25 |
+
print(output["generated_text"])
|
26 |
+
```
|
27 |
+
|
28 |
+
## Training procedure
|
29 |
+
|
30 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/akseljoonas-university-of-groningen/huggingface/runs/w3hmoma8)
|
31 |
+
|
32 |
+
|
33 |
+
This model was trained with SFT.
|
34 |
+
|
35 |
+
### Framework versions
|
36 |
+
|
37 |
+
- TRL: 0.16.0
|
38 |
+
- Transformers: 4.52.4
|
39 |
+
- Pytorch: 2.6.0
|
40 |
+
- Datasets: 3.6.0
|
41 |
+
- Tokenizers: 0.21.1
|
42 |
+
|
43 |
+
## Citations
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
Cite TRL as:
|
48 |
+
|
49 |
+
```bibtex
|
50 |
+
@misc{vonwerra2022trl,
|
51 |
+
title = {{TRL: Transformer Reinforcement Learning}},
|
52 |
+
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
|
53 |
+
year = 2020,
|
54 |
+
journal = {GitHub repository},
|
55 |
+
publisher = {GitHub},
|
56 |
+
howpublished = {\url{https://github.com/huggingface/trl}}
|
57 |
+
}
|
58 |
+
```
|
all_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"total_flos": 30554840104960.0,
|
3 |
+
"train_loss": 0.4982214890309234,
|
4 |
+
"train_runtime": 327.6119,
|
5 |
+
"train_samples": 1845,
|
6 |
+
"train_samples_per_second": 3.242,
|
7 |
+
"train_steps_per_second": 0.409
|
8 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.05,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.52.4"
|
14 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"total_flos": 30554840104960.0,
|
3 |
+
"train_loss": 0.4982214890309234,
|
4 |
+
"train_runtime": 327.6119,
|
5 |
+
"train_samples": 1845,
|
6 |
+
"train_samples_per_second": 3.242,
|
7 |
+
"train_steps_per_second": 0.409
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_global_step": null,
|
3 |
+
"best_metric": null,
|
4 |
+
"best_model_checkpoint": null,
|
5 |
+
"epoch": 2.0,
|
6 |
+
"eval_steps": 500,
|
7 |
+
"global_step": 134,
|
8 |
+
"is_hyper_param_search": false,
|
9 |
+
"is_local_process_zero": true,
|
10 |
+
"is_world_process_zero": true,
|
11 |
+
"log_history": [
|
12 |
+
{
|
13 |
+
"epoch": 0.07462686567164178,
|
14 |
+
"grad_norm": 1.097984505829403,
|
15 |
+
"learning_rate": 1.4285714285714285e-05,
|
16 |
+
"loss": 1.0711,
|
17 |
+
"mean_token_accuracy": 0.7844904899597168,
|
18 |
+
"num_tokens": 808107.0,
|
19 |
+
"step": 5
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"epoch": 0.14925373134328357,
|
23 |
+
"grad_norm": 0.5592347657844529,
|
24 |
+
"learning_rate": 3.2142857142857144e-05,
|
25 |
+
"loss": 0.7776,
|
26 |
+
"mean_token_accuracy": 0.8252509593963623,
|
27 |
+
"num_tokens": 1609080.0,
|
28 |
+
"step": 10
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"epoch": 0.22388059701492538,
|
32 |
+
"grad_norm": 2.3311733604872757,
|
33 |
+
"learning_rate": 5e-05,
|
34 |
+
"loss": 0.6944,
|
35 |
+
"mean_token_accuracy": 0.8515042781829834,
|
36 |
+
"num_tokens": 2364819.0,
|
37 |
+
"step": 15
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.29850746268656714,
|
41 |
+
"grad_norm": 0.539840904336575,
|
42 |
+
"learning_rate": 4.791666666666667e-05,
|
43 |
+
"loss": 0.5766,
|
44 |
+
"mean_token_accuracy": 0.8671263098716736,
|
45 |
+
"num_tokens": 3137298.0,
|
46 |
+
"step": 20
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.373134328358209,
|
50 |
+
"grad_norm": 0.41546864000168066,
|
51 |
+
"learning_rate": 4.5833333333333334e-05,
|
52 |
+
"loss": 0.5163,
|
53 |
+
"mean_token_accuracy": 0.8827684998512269,
|
54 |
+
"num_tokens": 3905642.0,
|
55 |
+
"step": 25
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"epoch": 0.44776119402985076,
|
59 |
+
"grad_norm": 0.353169354176409,
|
60 |
+
"learning_rate": 4.375e-05,
|
61 |
+
"loss": 0.5541,
|
62 |
+
"mean_token_accuracy": 0.8705575823783874,
|
63 |
+
"num_tokens": 4698822.0,
|
64 |
+
"step": 30
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"epoch": 0.5223880597014925,
|
68 |
+
"grad_norm": 0.3367736704335482,
|
69 |
+
"learning_rate": 4.166666666666667e-05,
|
70 |
+
"loss": 0.5299,
|
71 |
+
"mean_token_accuracy": 0.8778650641441346,
|
72 |
+
"num_tokens": 5502368.0,
|
73 |
+
"step": 35
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.5970149253731343,
|
77 |
+
"grad_norm": 0.32014959900195933,
|
78 |
+
"learning_rate": 3.958333333333333e-05,
|
79 |
+
"loss": 0.4523,
|
80 |
+
"mean_token_accuracy": 0.9003850221633911,
|
81 |
+
"num_tokens": 6264696.0,
|
82 |
+
"step": 40
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"epoch": 0.6716417910447762,
|
86 |
+
"grad_norm": 0.3766002391001425,
|
87 |
+
"learning_rate": 3.7500000000000003e-05,
|
88 |
+
"loss": 0.5118,
|
89 |
+
"mean_token_accuracy": 0.8829670548439026,
|
90 |
+
"num_tokens": 7073616.0,
|
91 |
+
"step": 45
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.746268656716418,
|
95 |
+
"grad_norm": 0.34901853331777233,
|
96 |
+
"learning_rate": 3.541666666666667e-05,
|
97 |
+
"loss": 0.6568,
|
98 |
+
"mean_token_accuracy": 0.8654794096946716,
|
99 |
+
"num_tokens": 7870867.0,
|
100 |
+
"step": 50
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.8208955223880597,
|
104 |
+
"grad_norm": 0.41496433526889975,
|
105 |
+
"learning_rate": 3.3333333333333335e-05,
|
106 |
+
"loss": 0.5018,
|
107 |
+
"mean_token_accuracy": 0.879916000366211,
|
108 |
+
"num_tokens": 8654369.0,
|
109 |
+
"step": 55
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"epoch": 0.8955223880597015,
|
113 |
+
"grad_norm": 0.35710466457229734,
|
114 |
+
"learning_rate": 3.125e-05,
|
115 |
+
"loss": 0.4922,
|
116 |
+
"mean_token_accuracy": 0.8849031329154968,
|
117 |
+
"num_tokens": 9406298.0,
|
118 |
+
"step": 60
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"epoch": 0.9701492537313433,
|
122 |
+
"grad_norm": 0.2759798405972834,
|
123 |
+
"learning_rate": 2.916666666666667e-05,
|
124 |
+
"loss": 0.5385,
|
125 |
+
"mean_token_accuracy": 0.8858557939529419,
|
126 |
+
"num_tokens": 10223729.0,
|
127 |
+
"step": 65
|
128 |
+
},
|
129 |
+
{
|
130 |
+
"epoch": 1.044776119402985,
|
131 |
+
"grad_norm": 0.37990993169333426,
|
132 |
+
"learning_rate": 2.7083333333333332e-05,
|
133 |
+
"loss": 0.4201,
|
134 |
+
"mean_token_accuracy": 0.9078471302986145,
|
135 |
+
"num_tokens": 10899620.0,
|
136 |
+
"step": 70
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.1194029850746268,
|
140 |
+
"grad_norm": 0.2768802930431144,
|
141 |
+
"learning_rate": 2.5e-05,
|
142 |
+
"loss": 0.4874,
|
143 |
+
"mean_token_accuracy": 0.8900921702384949,
|
144 |
+
"num_tokens": 11673700.0,
|
145 |
+
"step": 75
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"epoch": 1.1940298507462686,
|
149 |
+
"grad_norm": 0.3118601164754786,
|
150 |
+
"learning_rate": 2.2916666666666667e-05,
|
151 |
+
"loss": 0.4586,
|
152 |
+
"mean_token_accuracy": 0.8888717889785767,
|
153 |
+
"num_tokens": 12471762.0,
|
154 |
+
"step": 80
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"epoch": 1.2686567164179103,
|
158 |
+
"grad_norm": 3.127142887640936,
|
159 |
+
"learning_rate": 2.0833333333333336e-05,
|
160 |
+
"loss": 0.3011,
|
161 |
+
"mean_token_accuracy": 0.9234537720680237,
|
162 |
+
"num_tokens": 13235430.0,
|
163 |
+
"step": 85
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 1.3432835820895521,
|
167 |
+
"grad_norm": 0.28349474176463113,
|
168 |
+
"learning_rate": 1.8750000000000002e-05,
|
169 |
+
"loss": 0.355,
|
170 |
+
"mean_token_accuracy": 0.9111138224601746,
|
171 |
+
"num_tokens": 14035158.0,
|
172 |
+
"step": 90
|
173 |
+
},
|
174 |
+
{
|
175 |
+
"epoch": 1.417910447761194,
|
176 |
+
"grad_norm": 0.4656290158665034,
|
177 |
+
"learning_rate": 1.6666666666666667e-05,
|
178 |
+
"loss": 0.3988,
|
179 |
+
"mean_token_accuracy": 0.9019946575164794,
|
180 |
+
"num_tokens": 14818394.0,
|
181 |
+
"step": 95
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.4925373134328357,
|
185 |
+
"grad_norm": 0.35912081575893856,
|
186 |
+
"learning_rate": 1.4583333333333335e-05,
|
187 |
+
"loss": 0.3618,
|
188 |
+
"mean_token_accuracy": 0.9122716307640075,
|
189 |
+
"num_tokens": 15598792.0,
|
190 |
+
"step": 100
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"epoch": 1.5671641791044775,
|
194 |
+
"grad_norm": 0.30779204946938893,
|
195 |
+
"learning_rate": 1.25e-05,
|
196 |
+
"loss": 0.3203,
|
197 |
+
"mean_token_accuracy": 0.9191259384155274,
|
198 |
+
"num_tokens": 16383948.0,
|
199 |
+
"step": 105
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 1.6417910447761193,
|
203 |
+
"grad_norm": 1.0451064339674097,
|
204 |
+
"learning_rate": 1.0416666666666668e-05,
|
205 |
+
"loss": 0.457,
|
206 |
+
"mean_token_accuracy": 0.8926056742668151,
|
207 |
+
"num_tokens": 17148084.0,
|
208 |
+
"step": 110
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"epoch": 1.716417910447761,
|
212 |
+
"grad_norm": 0.3071303378120666,
|
213 |
+
"learning_rate": 8.333333333333334e-06,
|
214 |
+
"loss": 0.3756,
|
215 |
+
"mean_token_accuracy": 0.908941102027893,
|
216 |
+
"num_tokens": 17951763.0,
|
217 |
+
"step": 115
|
218 |
+
},
|
219 |
+
{
|
220 |
+
"epoch": 1.7910447761194028,
|
221 |
+
"grad_norm": 0.30659106999758134,
|
222 |
+
"learning_rate": 6.25e-06,
|
223 |
+
"loss": 0.4142,
|
224 |
+
"mean_token_accuracy": 0.9020455718040467,
|
225 |
+
"num_tokens": 18763975.0,
|
226 |
+
"step": 120
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 1.8656716417910446,
|
230 |
+
"grad_norm": 0.5796181274690525,
|
231 |
+
"learning_rate": 4.166666666666667e-06,
|
232 |
+
"loss": 0.4989,
|
233 |
+
"mean_token_accuracy": 0.8861546277999878,
|
234 |
+
"num_tokens": 19532240.0,
|
235 |
+
"step": 125
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"epoch": 1.9402985074626866,
|
239 |
+
"grad_norm": 0.3415301126393925,
|
240 |
+
"learning_rate": 2.0833333333333334e-06,
|
241 |
+
"loss": 0.3847,
|
242 |
+
"mean_token_accuracy": 0.9057931303977966,
|
243 |
+
"num_tokens": 20314776.0,
|
244 |
+
"step": 130
|
245 |
+
},
|
246 |
+
{
|
247 |
+
"epoch": 2.0,
|
248 |
+
"mean_token_accuracy": 0.9028400182723999,
|
249 |
+
"num_tokens": 20867736.0,
|
250 |
+
"step": 134,
|
251 |
+
"total_flos": 30554840104960.0,
|
252 |
+
"train_loss": 0.4982214890309234,
|
253 |
+
"train_runtime": 327.6119,
|
254 |
+
"train_samples_per_second": 3.242,
|
255 |
+
"train_steps_per_second": 0.409
|
256 |
+
}
|
257 |
+
],
|
258 |
+
"logging_steps": 5,
|
259 |
+
"max_steps": 134,
|
260 |
+
"num_input_tokens_seen": 0,
|
261 |
+
"num_train_epochs": 2,
|
262 |
+
"save_steps": 500,
|
263 |
+
"stateful_callbacks": {
|
264 |
+
"TrainerControl": {
|
265 |
+
"args": {
|
266 |
+
"should_epoch_stop": false,
|
267 |
+
"should_evaluate": false,
|
268 |
+
"should_log": false,
|
269 |
+
"should_save": true,
|
270 |
+
"should_training_stop": true
|
271 |
+
},
|
272 |
+
"attributes": {}
|
273 |
+
}
|
274 |
+
},
|
275 |
+
"total_flos": 30554840104960.0,
|
276 |
+
"train_batch_size": 1,
|
277 |
+
"trial_name": null,
|
278 |
+
"trial_params": null
|
279 |
+
}
|