Llama-3.2-3B-Butler / modeling_llama_butler.py
akhauriyash's picture
Initial commit
85dc616
import torch
import torch.nn as nn
from typing import Dict
from transformers import LlamaForCausalLM, LlamaConfig
from transformers.generation.utils import GenerationConfig
import os
import pdb
import copy
import math
import numpy as np
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union
import gc
import traceback
import torch
from torch import nn
import torch.utils.checkpoint
import torch.nn.functional as F
from torch.cuda.amp import autocast
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.models.llama.configuration_llama import LlamaConfig
from transformers.models.llama.modeling_llama import LlamaRotaryEmbedding, LlamaAttention, apply_rotary_pos_emb
from transformers.cache_utils import DynamicCache
class PredictorDynamicCache(DynamicCache):
def __init__(self):
super().__init__()
self.predictor_primary_key: List[Optional[torch.Tensor]] = []
self.predictor_primary_value: List[Optional[torch.Tensor]] = []
self.predictor_importance_key: List[Optional[torch.Tensor]] = []
def update_predictor_primary(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Append or create the predictor's "primary" K/V states for `layer_idx`.
shape for key_states, value_states is typically [batch_size, num_heads, seq_len, head_dim].
"""
# Extend the lists so that `predictor_primary_key[layer_idx]` and
# `predictor_primary_value[layer_idx]` exist.
self._ensure_list_capacity(
self.predictor_primary_key, layer_idx, fill=None
)
self._ensure_list_capacity(
self.predictor_primary_value, layer_idx, fill=None
)
# If this is the very first time we are updating that layer's predictor cache, just assign
if self.predictor_primary_key[layer_idx] is None:
self.predictor_primary_key[layer_idx] = key_states
self.predictor_primary_value[layer_idx] = value_states
else:
# Otherwise, concatenate along the seq_len dimension (=-2 or =2 depending on your shape).
self.predictor_primary_key[layer_idx] = torch.cat(
[self.predictor_primary_key[layer_idx], key_states], dim=2
)
self.predictor_primary_value[layer_idx] = torch.cat(
[self.predictor_primary_value[layer_idx], value_states], dim=2
)
return (
self.predictor_primary_key[layer_idx],
self.predictor_primary_value[layer_idx],
)
def update_predictor_importance(
self,
key_states: torch.Tensor,
layer_idx: int,
) -> torch.Tensor:
"""
Append or create the predictor's "importance" key for `layer_idx`.
"""
self._ensure_list_capacity(
self.predictor_importance_key, layer_idx, fill=None
)
if self.predictor_importance_key[layer_idx] is None:
self.predictor_importance_key[layer_idx] = key_states
else:
self.predictor_importance_key[layer_idx] = torch.cat(
[self.predictor_importance_key[layer_idx], key_states], dim=2
)
return self.predictor_importance_key[layer_idx]
def crop(self, max_length: int):
super().crop(max_length)
# Now also crop predictor caches
for idx in range(len(self.predictor_primary_key)):
if self.predictor_primary_key[idx] is not None:
self.predictor_primary_key[idx] = self.predictor_primary_key[idx][..., :max_length, :]
self.predictor_primary_value[idx] = self.predictor_primary_value[idx][..., :max_length, :]
for idx in range(len(self.predictor_importance_key)):
if self.predictor_importance_key[idx] is not None:
self.predictor_importance_key[idx] = self.predictor_importance_key[idx][..., :max_length, :]
# Remember to adjust self._seen_tokens accordingly
self._seen_tokens = min(self._seen_tokens, max_length)
def batch_split(
self, full_batch_size: int, split_size: int, num_hidden_layers: int = None
) -> List["PredictorDynamicCache"]:
# Use the base split logic for the standard K/V
base_splits = super().batch_split(full_batch_size, split_size, num_hidden_layers)
# `base_splits` is now a list of new DynamicCache objects. But we *actually*
# want them to be PredictorDynamicCache so we can store the predictor states.
# Easiest: we can cast and fill them.
out: List[PredictorDynamicCache] = []
for split_i, base_split in enumerate(base_splits):
# Construct an empty PredictorDynamicCache
new_cache = PredictorDynamicCache()
# Copy over the underlying fields from base_split
new_cache.key_cache = base_split.key_cache
new_cache.value_cache = base_split.value_cache
new_cache._seen_tokens = base_split._seen_tokens
# Now also slice our predictor fields
# The slice in batch dim is [i:i+split_size].
b_start = split_i * split_size
b_end = min(full_batch_size, b_start + split_size)
new_cache.predictor_primary_key = self._slice_list_tensors(
self.predictor_primary_key, b_start, b_end
)
new_cache.predictor_primary_value = self._slice_list_tensors(
self.predictor_primary_value, b_start, b_end
)
new_cache.predictor_importance_key = self._slice_list_tensors(
self.predictor_importance_key, b_start, b_end
)
out.append(new_cache)
return out
@classmethod
def from_batch_splits(cls, splits: List["PredictorDynamicCache"], num_hidden_layers: int = None) -> "PredictorDynamicCache":
# Let the base class handle the normal K/V merges
base_merged = DynamicCache.from_batch_splits(splits, num_hidden_layers=num_hidden_layers)
merged = cls()
merged.key_cache = base_merged.key_cache
merged.value_cache = base_merged.value_cache
merged._seen_tokens = base_merged._seen_tokens
# Now unify predictor states by concatenating along batch dim=0
merged.predictor_primary_key = cls._merge_list_tensors(
[split.predictor_primary_key for split in splits]
)
merged.predictor_primary_value = cls._merge_list_tensors(
[split.predictor_primary_value for split in splits]
)
merged.predictor_importance_key = cls._merge_list_tensors(
[split.predictor_importance_key for split in splits]
)
return merged
def batch_repeat_interleave(self, repeats: int):
super().batch_repeat_interleave(repeats)
self.predictor_primary_key = self._repeat_list_tensors(
self.predictor_primary_key, repeats
)
self.predictor_primary_value = self._repeat_list_tensors(
self.predictor_primary_value, repeats
)
self.predictor_importance_key = self._repeat_list_tensors(
self.predictor_importance_key, repeats
)
def batch_select_indices(self, indices: torch.Tensor):
super().batch_select_indices(indices)
self.predictor_primary_key = self._select_list_tensors(
self.predictor_primary_key, indices
)
self.predictor_primary_value = self._select_list_tensors(
self.predictor_primary_value, indices
)
self.predictor_importance_key = self._select_list_tensors(
self.predictor_importance_key, indices
)
@staticmethod
def _ensure_list_capacity(lst: list, idx: int, fill=None):
if len(lst) <= idx:
lst.extend([fill] * (idx + 1 - len(lst)))
@staticmethod
def _slice_list_tensors(
tensor_list: List[Optional[torch.Tensor]], start: int, end: int
) -> List[Optional[torch.Tensor]]:
out = []
for t in tensor_list:
if t is None:
out.append(None)
else:
out.append(t[start:end, ...])
return out
@classmethod
def _merge_list_tensors(
cls, list_of_lists: List[List[Optional[torch.Tensor]]]
) -> List[Optional[torch.Tensor]]:
# If no splits, return empty
if not list_of_lists:
return []
# Number of layers is length of the sub-list from the first split
max_len = len(list_of_lists[0])
merged = [None] * max_len
for layer_idx in range(max_len):
# collect that layer_idx from each split
chunk_tensors = []
for split in list_of_lists:
t = split[layer_idx] if layer_idx < len(split) else None
if t is not None:
chunk_tensors.append(t)
if len(chunk_tensors) == 0:
merged[layer_idx] = None
else:
merged[layer_idx] = torch.cat(chunk_tensors, dim=0)
return merged
@staticmethod
def _repeat_list_tensors(
tensor_list: List[Optional[torch.Tensor]], repeats: int
) -> List[Optional[torch.Tensor]]:
out = []
for t in tensor_list:
if t is None:
out.append(None)
else:
out.append(t.repeat_interleave(repeats, dim=0))
return out
@staticmethod
def _select_list_tensors(
tensor_list: List[Optional[torch.Tensor]], indices: torch.Tensor
) -> List[Optional[torch.Tensor]]:
out = []
for t in tensor_list:
if t is None:
out.append(None)
else:
out.append(t.index_select(0, indices))
return out
class TokenImportancePredictorAttentive(nn.Module):
def __init__(self, config, pred_hid_size, num_heads, num_hidden_layers, dDash, intdim, \
attn_reduce_factor, dropout=0.1):
"""
Optimized Token Importance Predictor with parallel Q-K projections and simplified mapping.
Args:
config: Configuration object containing model parameters.
pred_hid_size (int): Hidden size for the predictor's attention layer.
num_heads (int): Number of attention heads.
num_hidden_layers (int): Number of transformer layers to predict.
dropout (float): Dropout probability.
q_downscale (int): Factor to downscale the Q dimension for efficiency.
intermediate_dim (int): Intermediate dimension for non-linear transformations in projections.
"""
super().__init__()
self.config = config
self.hidden_size = pred_hid_size
self.num_heads = num_heads
self.num_hidden_layers = num_hidden_layers
self.dropout = dropout
self.head_dim = pred_hid_size // (num_heads * 4) # Predictor head dimension is not the same as the model head dimension.
self.rope_theta = config.rope_theta
self.dDash = dDash
self.intermediate_dim = intdim
self.attn_reduce_factor = attn_reduce_factor
self.max_position_embeddings = config.max_position_embeddings
self.flash_attn = False
assert pred_hid_size % (num_heads * 4) == 0, "pred_hid_size must be divisible by num_heads * 4."
# Reduce the hidden size for attention computations
self.hidden_size_reduced = self.hidden_size // self.attn_reduce_factor # For example, reduce to 1/4th
assert self.hidden_size_reduced % self.num_heads == 0, "Reduced hidden size must be divisible by num_heads"
self.attn_head_dim = self.hidden_size_reduced // self.num_heads
# Input projection to reduce hidden size
self.input_proj = nn.Linear(self.hidden_size, self.hidden_size_reduced, bias=False)
# Query, Key, Value projections for attention
self.q_proj_attn = nn.Linear(self.hidden_size_reduced, self.hidden_size_reduced, bias=False)
self.k_proj_attn = nn.Linear(self.hidden_size_reduced, self.hidden_size_reduced, bias=False)
self.v_proj_attn = nn.Linear(self.hidden_size_reduced, self.hidden_size_reduced, bias=False)
# Output projection to restore hidden size
# self.o_proj_attn = nn.Linear(self.hidden_size_reduced, self.hidden_size_reduced, bias=False)
self.attn_dropout = nn.Dropout(self.dropout)
# LayerNorm and Feed-forward network
self.norm1 = nn.LayerNorm(self.hidden_size_reduced)
self.norm2 = nn.LayerNorm(self.hidden_size)
self.ffn_hidden_size = 2 * self.hidden_size_reduced # Typical FFN hidden size
self.ffn = nn.Sequential(
nn.Linear(self.hidden_size_reduced, self.ffn_hidden_size),
nn.GELU(),
nn.Linear(self.ffn_hidden_size, self.hidden_size),
nn.Dropout(self.dropout)
)
# Add extra LayerNorm for the importance branch when not using the old design.
self.norm_importance = nn.LayerNorm(self.hidden_size)
# Define Q and K projection layers for all layers in parallel with non-linearity[]
# Output shape: [B, L, N * H * D']
self.q_proj_importance = nn.Sequential(
nn.Linear(pred_hid_size, self.intermediate_dim, bias=False),
nn.SiLU(),
nn.Linear(self.intermediate_dim, num_hidden_layers * num_heads * self.dDash, bias=False)
)
self.k_proj_importance = nn.Sequential(
nn.Linear(pred_hid_size, self.intermediate_dim, bias=False),
nn.SiLU(),
nn.Linear(self.intermediate_dim, num_hidden_layers * num_heads * self.dDash, bias=False)
)
# Initialize rotary positional embeddings
self._init_rope()
self._initialize_weights()
self.device = None
def _initialize_weights(self):
for name, module in self.named_modules():
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight) # Xavier initialization for linear layers
if module.bias is not None:
nn.init.constant_(module.bias, 0)
elif isinstance(module, nn.LayerNorm):
nn.init.constant_(module.weight, 1.0)
nn.init.constant_(module.bias, 0.0)
elif isinstance(module, nn.MultiheadAttention):
# Initialize in_proj_weight
nn.init.xavier_uniform_(module.in_proj_weight)
if module.in_proj_bias is not None:
nn.init.constant_(module.in_proj_bias, 0)
# Initialize out_proj
nn.init.xavier_uniform_(module.out_proj.weight)
if module.out_proj.bias is not None:
nn.init.constant_(module.out_proj.bias, 0)
def _init_rope(self):
# send self.config but after modifying head_dim to be self.head_dim just in the function call
config_copy = copy.deepcopy(self.config)
config_copy.rope_scaling = {
"factor": 32.0,
"high_freq_factor": 4.0,
"low_freq_factor": 1.0,
"original_max_position_embeddings": 8192,
"rope_type": "llama3"
}
config_copy.head_dim = self.attn_head_dim
# Rotary embedding for attention layer
self.rotary_emb_attn = LlamaRotaryEmbedding(
config_copy
)
config_copy.head_dim = self.dDash
# Rotary embedding for importance projection
self.rotary_emb_importance = LlamaRotaryEmbedding(
config_copy
)
def forward(self, hidden_states, attention_mask=None, position_ids=None, past_key_value=None, use_cache=False, layer_idx=None):
"""
Forward pass for the Optimized Token Importance Predictor.
Args:
hidden_states (torch.Tensor): Input tensor of shape [B, L, HQ].
attention_mask (torch.Tensor, optional): Attention mask of shape [B, 1, 1, L] or [B, 1, L, L].
position_ids (torch.Tensor, optional): Position IDs.
past_key_value (tuple, optional): Past key and value states.
use_cache (bool, optional): Whether to use cache.
Returns:
torch.Tensor: Importance scores of shape [B, N, H, L, L].
"""
layer_idx = 0 # Guaranteed to be 0, as we only have one predictor!
# Set device if not already set
if self.device != hidden_states.device:
self.device = hidden_states.device
self.to(self.device)
B, L, E = hidden_states.size()
# Reduce hidden size
hidden_states = hidden_states.to(self.input_proj.weight.dtype)
hidden_states_reduced = self.input_proj(hidden_states) # [B, L, hidden_size_reduced]
# Compute q, k, v for attention
q = self.q_proj_attn(hidden_states_reduced) # [B, L, hidden_size_reduced]
k = self.k_proj_attn(hidden_states_reduced) # [B, L, hidden_size_reduced]
v = self.v_proj_attn(hidden_states_reduced) # [B, L, hidden_size_reduced]
# Reshape q, k, v to [B, num_heads, L, attn_head_dim]
q = q.view(B, L, self.num_heads, self.attn_head_dim).transpose(1, 2) # [B, num_heads, L, attn_head_dim]
k = k.view(B, L, self.num_heads, self.attn_head_dim).transpose(1, 2) # [B, num_heads, L, attn_head_dim]
v = v.view(B, L, self.num_heads, self.attn_head_dim).transpose(1, 2) # [B, num_heads, L, attn_head_dim]
if (past_key_value is not None
and layer_idx < len(past_key_value.predictor_primary_key)
and past_key_value.predictor_primary_key[layer_idx] is not None):
offset = past_key_value.predictor_primary_key[layer_idx].shape[2] # old_k.shape[2]
else:
offset = 0
# total seq length for new + old
kv_seq_len = offset + L
# Step 2: build position_ids for just the new chunk [offset..offset+L-1]
if position_ids is None:
# shape [B, L], e.g. [0..(offset+L-1)]
position_ids = torch.arange(offset, offset + L, dtype=torch.long, device=self.device)
position_ids = position_ids.unsqueeze(0).expand(B, L)
# Step 3: apply rotary to just the new chunk k,v with the correct offset
cos, sin = self.rotary_emb_attn(v, position_ids)
q, k = apply_rotary_pos_emb(q, k, cos, sin, position_ids)
# Step 4: ask the cache to append them. Then re‐assign k, v to the full cat
if use_cache and past_key_value is not None:
k, v = past_key_value.update_predictor_primary(k.detach(), v.detach(), layer_idx)
kv_seq_len = k.size(2) # now includes old + new
attn_output = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, is_causal=True)
attn_output = attn_output.to(q.dtype)
attn_output = attn_output.transpose(1, 2).contiguous().view(B, L, self.hidden_size_reduced)
attn_output = self.norm1(attn_output)
ffn_output = self.ffn(attn_output)
# Temporary measure, till old predictor fully deprecated
hidden_states = self.norm2(hidden_states + ffn_output)
B, L, E = hidden_states.size()
# Importance projections
H = self.num_heads
N = self.num_hidden_layers
hidden_states_for_importance = self.norm_importance(hidden_states)
q_importance = self.q_proj_importance(hidden_states_for_importance)
k_importance = self.k_proj_importance(hidden_states_for_importance)
# Reshape and permute to [B, N, H, L, D']
q_importance = q_importance.view(B, L, N, H, self.dDash).permute(0, 2, 3, 1, 4).contiguous() # [B, N, H, L, D']
k_importance = k_importance.view(B, L, N, H, self.dDash).permute(0, 2, 3, 1, 4).contiguous() # [B, N, H, L, D']
# Flatten N and H for efficient computation
q_importance = q_importance.view(B * N * H, L, self.dDash) # [BNH, L, D']
k_importance = k_importance.view(B * N * H, L, self.dDash) # [BNH, L, D']
# Apply rotary positional embeddings
cos, sin = self.rotary_emb_importance(k_importance, position_ids)
q_importance, k_importance = apply_rotary_pos_emb(q_importance, k_importance, cos, sin, position_ids)
if use_cache and past_key_value is not None:
k_importance = past_key_value.update_predictor_importance(k_importance.detach(), layer_idx)
k_importance = k_importance.view(B * H, N, -1, self.dDash) # [BNH, L, D']
q_importance = q_importance.view(B * H, N, -1, self.dDash) # [BH, N, L, D']
return q_importance, k_importance
class HeadImportancePredictor(nn.Module):
def __init__(self, config, pred_hid_size, num_heads, num_hidden_layers, dDash, intdim, \
attn_reduce_factor, dropout=0.1):
"""
Optimized Token Importance Predictor with parallel Q-K projections and simplified mapping.
Args:
config: Configuration object containing model parameters.
pred_hid_size (int): Hidden size for the predictor's attention layer.
num_heads (int): Number of attention heads.
num_hidden_layers (int): Number of transformer layers to predict.
dropout (float): Dropout probability.
q_downscale (int): Factor to downscale the Q dimension for efficiency.
intermediate_dim (int): Intermediate dimension for non-linear transformations in projections.
"""
super().__init__()
self.is_head_predictor = None
self.config = config
self.hidden_size = pred_hid_size
self.num_heads = num_heads
self.num_hidden_layers = num_hidden_layers
self.dropout = dropout
self.head_dim = pred_hid_size // (num_heads * 4)
self.rope_theta = config.rope_theta
self.dDash = dDash
self.intermediate_dim = intdim
self.attn_reduce_factor = attn_reduce_factor
self.max_position_embeddings = config.max_position_embeddings
self.flash_attn = False
# Reduce the hidden size for attention computations
self.hidden_size_reduced = self.hidden_size // self.attn_reduce_factor # For example, reduce to 1/4th
assert self.hidden_size_reduced % self.num_heads == 0, "Reduced hidden size must be divisible by num_heads"
self.attn_head_dim = self.hidden_size_reduced // self.num_heads
# Input projection to reduce hidden size
self.input_proj = nn.Linear(self.hidden_size, self.hidden_size_reduced, bias=False)
# Query, Key, Value projections for attention
self.q_proj_attn = nn.Linear(self.hidden_size_reduced, self.hidden_size_reduced, bias=False)
self.k_proj_attn = nn.Linear(self.hidden_size_reduced, self.hidden_size_reduced, bias=False)
self.v_proj_attn = nn.Linear(self.hidden_size_reduced, self.hidden_size_reduced, bias=False)
# Output projection to restore hidden size
# self.o_proj_attn = nn.Linear(self.hidden_size_reduced, self.hidden_size_reduced, bias=False)
self.attn_dropout = nn.Dropout(self.dropout)
# LayerNorm and Feed-forward network
self.norm1 = nn.LayerNorm(self.hidden_size_reduced)
self.norm2 = nn.LayerNorm(self.hidden_size)
self.ffn_hidden_size = 4 * self.hidden_size_reduced # Typical FFN hidden size
self.ffn = nn.Sequential(
nn.Linear(self.hidden_size_reduced, self.ffn_hidden_size),
nn.GELU(),
nn.Linear(self.ffn_hidden_size, self.num_heads * self.num_hidden_layers),
)
# Initialize rotary positional embeddings
self._init_rope()
self._initialize_weights()
self.device = None
def _initialize_weights(self):
for name, module in self.named_modules():
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight) # Xavier initialization for linear layers
if module.bias is not None:
nn.init.constant_(module.bias, 0)
elif isinstance(module, nn.LayerNorm):
nn.init.constant_(module.weight, 1.0)
nn.init.constant_(module.bias, 0.0)
elif isinstance(module, nn.MultiheadAttention):
# Initialize in_proj_weight
nn.init.xavier_uniform_(module.in_proj_weight)
if module.in_proj_bias is not None:
nn.init.constant_(module.in_proj_bias, 0)
# Initialize out_proj
nn.init.xavier_uniform_(module.out_proj.weight)
if module.out_proj.bias is not None:
nn.init.constant_(module.out_proj.bias, 0)
def _init_rope(self):
config_copy = copy.deepcopy(self.config)
config_copy.head_dim = self.attn_head_dim
# Rotary embedding for attention layer
self.rotary_emb_attn = LlamaRotaryEmbedding(
config_copy
)
# Rotary embedding for importance projection
self.rotary_emb_importance = LlamaRotaryEmbedding(
config_copy
)
def forward(self, hidden_states, attention_mask=None, position_ids=None, past_key_value=None, use_cache=False):
"""
Forward pass for the Optimized Token Importance Predictor.
Args:
hidden_states (torch.Tensor): Input tensor of shape [B, L, HQ].
attention_mask (torch.Tensor, optional): Attention mask of shape [B, 1, 1, L] or [B, 1, L, L].
position_ids (torch.Tensor, optional): Position IDs.
past_key_value (tuple, optional): Past key and value states.
use_cache (bool, optional): Whether to use cache.
Returns:
torch.Tensor: Importance scores of shape [B, N, H, L, L].
"""
# Set device if not already set
if self.device != hidden_states.device:
self.device = hidden_states.device
self.to(self.device)
B, L, E = hidden_states.size()
if past_key_value is None:
past_key_value = {}
# if L == 1:
# import pdb; pdb.set_trace()
past_primary = past_key_value.get('primary', None)
# Reduce hidden size
hidden_states = hidden_states.to(self.input_proj.weight.dtype)
hidden_states_reduced = self.input_proj(hidden_states) # [B, L, hidden_size_reduced]
# Compute q, k, v for attention
q = self.q_proj_attn(hidden_states_reduced) # [B, L, hidden_size_reduced]
k = self.k_proj_attn(hidden_states_reduced) # [B, L, hidden_size_reduced]
v = self.v_proj_attn(hidden_states_reduced) # [B, L, hidden_size_reduced]
# Reshape q, k, v to [B, num_heads, L, attn_head_dim]
q = q.view(B, L, self.num_heads, self.attn_head_dim).transpose(1, 2) # [B, num_heads, L, attn_head_dim]
k = k.view(B, L, self.num_heads, self.attn_head_dim).transpose(1, 2) # [B, num_heads, L, attn_head_dim]
v = v.view(B, L, self.num_heads, self.attn_head_dim).transpose(1, 2) # [B, num_heads, L, attn_head_dim]
# Compute kv_seq_len before concatenation
if past_primary is not None:
past_L = past_primary[0].shape[2]
kv_seq_len = past_L + L
else:
kv_seq_len = L
# Apply rotary positional embeddings based on kv_seq_len
cos, sin = self.rotary_emb_attn(v, position_ids)
if position_ids is None:
position_ids = torch.arange(kv_seq_len, dtype=torch.long, device=self.device)
position_ids = position_ids.unsqueeze(0).expand(B, kv_seq_len)
if past_primary is not None:
# Concatenate past k and v
k = torch.cat([past_primary[0], k], dim=2) # [B, num_heads, past_L + L, attn_head_dim]
v = torch.cat([past_primary[1], v], dim=2) # [B, num_heads, past_L + L, attn_head_dim]
# Apply rotary embeddings after concatenation
q, k = apply_rotary_pos_emb(q, k, cos, sin, position_ids)
# Update cache if use_cache is True
if use_cache:
past_key_value['primary'] = (k.detach(), v.detach())
# if self.flash_attn:
# sm_scale = 1.0 / math.sqrt(self.attn_head_dim)
# attn_output = attention(q.contiguous().to(torch.float16), k.contiguous().to(torch.float16), v.contiguous().to(torch.float16), True, sm_scale).to(q.dtype)
# else:
# attn_output = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, is_causal=True)
attn_output = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, is_causal=True)
attn_output = attn_output.to(q.dtype)
attn_output = attn_output.transpose(1, 2).contiguous().view(B, L, self.hidden_size_reduced)
attn_output = self.norm1(attn_output)
head_importances = self.ffn(attn_output)
return head_importances, past_key_value
def calculate_hit_metrics(estimated_importance: torch.Tensor,
true_importance: torch.Tensor,
top_k_ratio: float = 0.5) -> Tuple[float, float, float]:
"""
Calculate hit accuracy, mean, and max rank correlation between estimated and true importance tensors.
We compute metrics along the last dimension of the input tensors.
Shapes:
- 4D token-importance: [B, H, L, L]. We slice the last query (index -1) => [B, H, L].
- 3D head-importance: [B, L, H]. We use all of it as-is => [B, L, H].
Args:
estimated_importance (torch.Tensor): [B, H, L, L] or [B, L, H]
true_importance (torch.Tensor): [B, H, L, L] or [B, L, H]
top_k_ratio (float): Fraction of top-k elements to consider for hit accuracy (default=0.5).
Returns:
(hit_accuracy, mean_corr, max_corr):
hit_accuracy (float): Intersection ratio of top-k sets (0..1).
mean_corr (float): Average Spearman rank correlation over all [B, ...].
max_corr (float): Maximum Spearman rank correlation among all [B, ...].
"""
# 1) Standardize shapes so the last dimension is what we rank over.
if estimated_importance.dim() == 4:
# Shape is [B, H, L, L] => slice to keep only the last query => [B, H, L]
estimated_importance = estimated_importance[:, :, -1, :]
true_importance = true_importance[:, :, -1, :]
# after slicing: [B, H, L]
# For intersection denominator => top_k * B * H
denom_for_hits = estimated_importance.size(0) * estimated_importance.size(1)
elif estimated_importance.dim() == 3:
# Shape is [B, L, H], the last dimension is H
# For intersection denominator => top_k * B * L
denom_for_hits = estimated_importance.size(0) * estimated_importance.size(1)
else:
raise ValueError("Tensors must be either 4D [B,H,L,L] or 3D [B,L,H].")
# 2) Compute Spearman rank correlation along the last dimension.
# Sort indices in descending order => get 'ranks' for correlation.
_, sorted_esti = torch.sort(estimated_importance, dim=-1, descending=True)
_, sorted_true = torch.sort(true_importance, dim=-1, descending=True)
# Spearman's rho = 1 - 6 * sum(d^2) / [n*(n^2 - 1)]
n = sorted_esti.shape[-1]
d = sorted_esti.float() - sorted_true.float()
d_squared = d ** 2
sum_d_squared = d_squared.sum(dim=-1)
rank_corr = 1 - (6 * sum_d_squared) / (n * (n**2 - 1)) # shape: [B,H] or [B,L]
mean_corr = rank_corr.mean().item()
max_corr = rank_corr.max().item()
# 3) Compute top-k hit accuracy along the last dimension.
top_k = max(1, int(n * top_k_ratio))
_, top_esti_indices = torch.topk(estimated_importance, top_k, dim=-1)
_, top_true_indices = torch.topk(true_importance, top_k, dim=-1)
# top_esti_indices => [B,H,top_k] or [B,L,top_k]
# top_true_indices => [B,H,top_k] or [B,L,top_k]
# matches => [B,H,top_k,top_k] or [B,L,top_k,top_k]
matches = (top_esti_indices.unsqueeze(-1) == top_true_indices.unsqueeze(-2))
intersection = matches.any(dim=-1).sum(dim=-1) # => [B,H] or [B,L]
# Each [B,H] or [B,L] element can have at most 'top_k' matches, so total is top_k * denom_for_hits.
total_possible = top_k * denom_for_hits
hit_accuracy = intersection.sum().item() / total_possible # => 0..1
return hit_accuracy, mean_corr, max_corr
def threshold_to_mask(unadj_importance_mask, perhead_thresholds, min_sparse_index, bsz, q_len, key_len):
"""
Create a mask tensor based on per-head thresholds, setting values below the threshold to -inf.
Args:
- unadj_importance_mask: torch.Tensor of shape [B, H, Lq, Lk].
- perhead_thresholds: torch.Tensor of shape [H], per-head thresholds.
- min_sparse_index: Minimum index for sparsity; values below this index will not be masked.
- bsz: Batch size.
- q_len: Query length (Lq).
- key_len: Key length (Lk).
Returns:
- mask_tensor: torch.Tensor of shape [B, H, Lq, Lk], with values below threshold as -inf.
"""
# Ensure perhead_thresholds is in the correct shape for broadcasting
thresholds_broadcast = perhead_thresholds.view(1, -1, 1, 1) # [1, H, 1, 1]
# Compare unadj_importance_mask with thresholds to create a mask
mask_tensor = torch.where(
unadj_importance_mask >= thresholds_broadcast,
torch.zeros_like(unadj_importance_mask),
torch.full_like(unadj_importance_mask, float('-inf'))
) # [B, H, Lq, Lk]
# Ensure mask_tensor has mask_tensor[:, :, :, :min_sparse_index] = 0
mask_tensor[:, :, :, :min_sparse_index] = 0.0
return mask_tensor
class SlidingWindowCache:
def __init__(self, max_seq_len, sliding_window, device):
self.sliding_window = sliding_window
self.device = device
if sliding_window is None:
self.max_seq_len = 0
self.window = None
else:
self.max_seq_len = max_seq_len
self.window = self._create_window(self.max_seq_len)
def _create_window(self, seq_len):
idx = torch.arange(seq_len, device=self.device)
query = idx.unsqueeze(1) # [seq_len, 1]
key = idx.unsqueeze(0) # [1, seq_len]
win = (key >= (query - self.sliding_window + 1)) & (key <= query)
return win.unsqueeze(0).unsqueeze(0) # [1,1,seq_len,seq_len]
def get_window(self, q_len, key_len):
if self.sliding_window is None:
return None
req = max(q_len, key_len)
if req > self.max_seq_len:
self.max_seq_len = req
self.window = self._create_window(self.max_seq_len)
return self.window[:, :, :q_len, :key_len]
def enforce_sliding_window(mask_tensor, window):
if window is None:
return mask_tensor
return mask_tensor.masked_fill(window, 0.0)
def sorted_index_to_mask(
sorted_indices,
attention_mask,
min_sparse_index,
bsz,
q_len,
key_len,
sparse_aggression,
sliding_window=None
):
"""
sorted_indices: [B, H, q_len, key_len]
attention_mask: [1, 1, q_len, key_len] (True = keep, False = mask out, or vice versa)
min_sparse_index: guaranteed front region to keep
sliding_window: guaranteed trailing region (for each query) to keep
sparse_aggression: float in [0,1], fraction of keys to drop or keep
"""
device = sorted_indices.device
dtype = sorted_indices.dtype
# Step 1: Compute base K
if q_len == 1:
query_positions = torch.arange(q_len, device=device).view(1, 1, q_len, 1).float()
query_positions[0] = key_len + 1
else:
query_positions = torch.arange(q_len, device=device).view(1, 1, q_len, 1).float() + 1.0
K_original = torch.ceil(query_positions * sparse_aggression).long() # [1,1,q_len,1]
K_original = torch.clamp(K_original, max=key_len)
# Step 1b: Incorporate guaranteed region
guaranteed = min_sparse_index
if sliding_window is not None:
guaranteed += sliding_window
# Subtract guaranteed from the original K
K_adjusted = K_original - guaranteed
# Ensure K_adjusted is at least 0
K_adjusted = torch.clamp(K_adjusted, min=0, max=key_len)
# Step 2: Expand attention_mask to [B,H,q_len,key_len]
attention_mask_expanded = attention_mask.expand(bsz, -1, -1, -1)
attention_mask_expanded = attention_mask_expanded.expand(-1, sorted_indices.size(1), -1, -1)
# Convert True -> 1, False -> 0
attention_mask_expanded = (~attention_mask_expanded.bool()).int()
# Step 3: Gather (reorder) mask by sorted_indices
gathered_mask = torch.gather(attention_mask_expanded, dim=-1, index=sorted_indices)
# Step 4: cumsum along sorted dimension
gathered_mask_float = gathered_mask.float()
cum_sum = torch.cumsum(gathered_mask_float, dim=-1) # [B,H,q_len,key_len]
# Step 5: Compare cumsum <= K_adjusted
# Expand K_adjusted to [B,H,q_len,key_len] for broadcast
K_broadcast = K_adjusted.view(1, 1, q_len, 1).expand_as(cum_sum)
selected_mask = (cum_sum <= K_broadcast)
# Step 6: Prepare final mask_tensor with -inf by default
mask_tensor = torch.full_like(attention_mask_expanded.float(), float('-inf'))
# Step 7: Scatter 0 where selected, -inf otherwise
scatter_values = torch.zeros_like(gathered_mask_float)
scatter_values = scatter_values.masked_fill(~selected_mask, float('-inf'))
mask_tensor.scatter_(-1, sorted_indices, scatter_values)
# Step 8: Force the guaranteed front region unmasked
mask_tensor[:, :, :, :min_sparse_index] = 0.0
# We do NOT forcibly unmask the trailing `sliding_window` here,
# because we typically do it with a separate function that
# ensures the last `sliding_window` positions are unmasked for each query.
# Replace with self.sliding_window where referenced
# Where not referenced, reduce budget in calculation.
return mask_tensor
class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
"""LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0, config=None):
self.scaling_factor = scaling_factor
super().__init__(config)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
t = t / self.scaling_factor
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
"""LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0, config=None):
self.scaling_factor = scaling_factor
super().__init__(config)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
if seq_len > self.max_position_embeddings:
base = self.base * (
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
) ** (self.dim / (self.dim - 2))
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
class LlamaAttentionExperimental(nn.Module):
def __init__(self, config: LlamaConfig, producer=None, layer_idx=0):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.num_hidden_layers = config.num_hidden_layers
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.inference_mode = False
self.producer = producer
self.layer_idx = layer_idx
self.token_sparse_method = None
self.sparse_aggression = None
self.stream_llm_start_size = None
self.dDash = None
self.intdim = None
self.attn_reduce_factor = None
self.head_attn_reduce_factor = None
self.effective_sparsity = None
self.min_sparse_index = None
self.pred_hid_size = self.hidden_size
self.num_tok_per_page = None
self.calc_hitrates = False
self.flash_attn = False
self.train_headpredictor = False
self.calibrate_thresholds = False
self.test_with_thresholds = False
self.old_predictor = None
if self.layer_idx > 0:
self.mseloss = MSELoss(reduction='none')
self.msemagn_loss = None
self.headmseloss = MSELoss(reduction='none')
self.headmsemagn_loss = None
if self.producer is None: # This is the producer layer
self.q_importance = None # Shared mask across layers during inference
self.k_importance = None
self.head_importances = None
self.actmagn_masklist = {}
self.available_tokens = {}
# Attention setup
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
self._init_rope()
def update_predictor(self):
self.sparse_token_predictor = TokenImportancePredictorAttentive(
self.config, self.pred_hid_size, self.num_heads, self.num_layers_pred, dropout=0.1, dDash = self.dDash, \
intdim = self.intdim, attn_reduce_factor=self.attn_reduce_factor
).to('cuda:0')
self.sparse_token_predictor.flash_attn = self.flash_attn
if self.train_headpredictor:
self.sparse_head_predictor = HeadImportancePredictor(
self.config, self.pred_hid_size, self.num_heads, self.num_layers_pred, dropout=0.1, dDash = self.dDash, \
intdim = self.intdim, attn_reduce_factor=self.head_attn_reduce_factor
).to('cuda:0')
self.sparse_head_predictor.flash_attn = self.flash_attn
def set_token_sparsity(self):
assert self.token_sparse_method is not None, "Set token sparse method first!"
if self.token_sparse_method is not None:
try:
mname = self.config._name_or_path.split("/")[-1]
read_path = f"threshold_calibs/{mname}/{self.token_sparse_method}.pkl"
threshold_model_dictionary = torch.load(read_path)
self.tok_calibration_set = threshold_model_dictionary
except:
pass
if self.token_sparse_method == "LazyLLM":
if self.layer_idx <= 9:
self.sparse_aggression = 1
elif self.layer_idx <= 19:
self.sparse_aggression = 0.7
elif self.layer_idx <= 28:
self.sparse_aggression = 0.4
else:
self.sparse_aggression = 0.1
elif "fixed" in self.token_sparse_method:
if self.layer_idx == 0:
self.sparse_aggression = 1
else:
self.sparse_aggression = 1 - float(self.token_sparse_method.split("_")[1].split("pc")[0])/100.
elif "progressive" in self.token_sparse_method:
pc_drop = float(self.token_sparse_method.split("_")[1].split("pc")[0])/100.
self.sparse_aggression = (1 - pc_drop) ** (self.layer_idx) # (x% per layer, progressive_xpc style)
else:
raise ValueError(f"Unknown token sparsity method {self.token_sparse_method}")
def _init_rope(self):
if self.config.rope_scaling is None:
self.rotary_emb = LlamaRotaryEmbedding(
self.config
)
else:
scaling_type = self.config.rope_scaling.get("type") or self.config.rope_scaling.get("rope_type")
scaling_factor = self.config.rope_scaling["factor"]
if scaling_type == "linear" or scaling_type == 'llama3':
self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
self.head_dim,
max_position_embeddings=self.max_position_embeddings,
scaling_factor=scaling_factor,
base=self.rope_theta,
config=self.config
)
elif scaling_type == "dynamic":
self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
self.head_dim,
max_position_embeddings=self.max_position_embeddings,
scaling_factor=scaling_factor,
base=self.rope_theta,
config=self.config
)
else:
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Union[DynamicCache, PredictorDynamicCache]] = None,
output_attentions: bool = False,
use_cache: bool = False,
padding_mask: Optional[torch.LongTensor] = None,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[PredictorDynamicCache]]:
bsz, q_len, _ = hidden_states.size()
Ltrack = hidden_states.size(1)
if self.config.pretraining_tp > 1:
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
query_slices = self.q_proj.weight.split(
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
)
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
query_states = torch.cat(query_states, dim=-1)
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
key_states = torch.cat(key_states, dim=-1)
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
value_states = torch.cat(value_states, dim=-1)
else:
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
evalmode = self.eval_llm_mode
num_tokens_to_keep = int(q_len * self.sparse_aggression)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
# cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) # AHMED: Modified this to use the newer version.
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
if use_cache:
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx)
kv_seq_len = key_states.shape[-2]
final_mask = None
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
key_len = key_states.size(2)
bsz, q_len = query_states.size(0), query_states.size(2)
if attention_mask is None:
# We want a [q_len, kv_seq_len] boolean upper-triangular mask
causal_mask_2d = torch.ones(q_len, kv_seq_len,
device=hidden_states.device,
dtype=torch.bool).triu(diagonal=1)
# Then shape it to [bsz, 1, q_len, kv_seq_len]
causal_mask_4d = causal_mask_2d.unsqueeze(0).expand(bsz, 1, q_len, kv_seq_len)
# Now fill -inf where the mask is True
attention_mask = torch.full_like(causal_mask_4d, 0, dtype=hidden_states.dtype)
if q_len != 1:
attention_mask = attention_mask.masked_fill(causal_mask_4d, float("-inf"))
if self.inference_mode:
min_sparse_index = self.min_sparse_index
with torch.no_grad():
if evalmode == "ExpPred":
if self.layer_idx > 0:
q_importance_tensor = self.producer.q_importance[:, self.layer_idx % self.producer_frequency, :, :].float().to(query_states.device) # [BH, Lq, D']
k_importance_tensor = self.producer.k_importance[:, self.layer_idx % self.producer_frequency, :, :].float().to(key_states.device) # [BH, Lk, D']
importance_mask = torch.bmm(q_importance_tensor, k_importance_tensor.transpose(-2, -1)) / math.sqrt(self.dDash) # [BH, Lq, Lk]
importance_mask = importance_mask.view(bsz, self.num_heads, q_len, key_len) # [B, H, Lq, Lk]
attn_weights = torch.matmul(query_states, key_states.transpose(-2, -1)) / math.sqrt(self.head_dim)
if self.calc_hitrates:
self.tok_hit_acc, self.tok_mean_rank_corr, self.tok_max_rank_corr = calculate_hit_metrics(
estimated_importance=importance_mask,
true_importance=attn_weights,
top_k_ratio=0.5
)
if self.calibrate_thresholds:
### Threshold variance investigation
unadj_importance_mask = importance_mask.clone()
importance_mask = torch.softmax(importance_mask + attention_mask, dim=-1)
sorted_indices = torch.argsort(importance_mask, dim=-1, descending=True)
sorted_indices = sorted_indices[:, :, -q_len:, :]
sorted_values, sorted_ix = torch.sort(importance_mask, dim=-1)
sorted_true_values, _ = torch.sort(torch.gather(unadj_importance_mask, dim=-1, index=sorted_ix), dim=-1)
true_thresholds = sorted_true_values[:, :, :, int(importance_mask.size(-1) * self.sparse_aggression)]
thresholds = sorted_values[:, :, :, int(importance_mask.size(-1) * self.sparse_aggression)]
self.true_threshmean = true_thresholds
self.threshmean = thresholds
if self.test_with_thresholds:
unadj_importance_mask = importance_mask.clone()
perhead_thresholds = self.tok_calibration_set[self.layer_idx - 1].to(unadj_importance_mask.device) # 0 does not have calibration data.
mask_tensor = threshold_to_mask(unadj_importance_mask, perhead_thresholds, min_sparse_index, bsz, q_len, key_len)
else:
importance_mask = torch.softmax(importance_mask + attention_mask, dim=-1)
sorted_indices = torch.argsort(importance_mask, dim=-1, descending=True)
sorted_indices = sorted_indices[:, :, -q_len:, :]
mask_tensor = sorted_index_to_mask(sorted_indices, attention_mask, min_sparse_index, bsz, q_len, key_len, self.sparse_aggression, self.sliding_window)
### Threshold variance investigation
if self.sliding_window is not None:
if not hasattr(self, "window_cache"):
self.window_cache = SlidingWindowCache(max_seq_len=1024,
sliding_window=self.sliding_window,
device=mask_tensor.device)
window = self.window_cache.get_window(q_len, key_len)
mask_tensor = enforce_sliding_window(mask_tensor, window)
final_mask = mask_tensor
self.final_mask_investigate = final_mask
attn_weights = attn_weights + mask_tensor + attention_mask
else:
attn_weights = torch.matmul(query_states, key_states.transpose(-2, -1)) / math.sqrt(self.head_dim)
attn_weights = attn_weights + attention_mask
else:
raise ValueError(f"Unknown eval mode {evalmode}")
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
else:
attn_weights = torch.matmul(query_states, key_states.transpose(-2, -1)) / math.sqrt(self.head_dim)
if self.layer_idx > 0:
q_importance_tensor = self.producer.q_importance[:, self.layer_idx % self.producer_frequency, :, :].float().to(query_states.device) # [BH, Lq, D']
k_importance_tensor = self.producer.k_importance[:, self.layer_idx % self.producer_frequency, :, :].float().to(key_states.device) # [BH, Lk, D']
importance_mask = torch.bmm(q_importance_tensor, k_importance_tensor.transpose(-2, -1)) / math.sqrt(self.dDash) # [BH, Lq, Lk]
importance_mask = importance_mask.view(bsz, self.num_heads, q_len, key_len) # [B, H, Lq, Lk]
if self.lookahead == 0:
self.msemagn_loss = self.mseloss(attn_weights, importance_mask)
else:
self.msemagn_loss = self.mseloss(attn_weights[:, :, self.lookahead:, :], importance_mask[:, :, :-self.lookahead, :])
self.msemagn_loss = (self.msemagn_loss).mean(dim=(-1, -2))
self.msemagn_loss = self.msemagn_loss.mean()
if self.calc_hitrates:
self.tok_hit_acc, self.tok_mean_rank_corr, self.tok_max_rank_corr = calculate_hit_metrics(
estimated_importance=importance_mask,
true_importance=attn_weights,
top_k_ratio=0.5
)
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
if self.layer_idx > 0 and self.train_headpredictor:
head_importance_tensor = self.producer.head_importances[:, :, :, self.layer_idx % self.producer_frequency].float().to(attn_output.device)
attn_head_weights = attn_output.mean(dim=-1).permute(0, 2, 1)
self.headmsemagn_loss = self.headmseloss(attn_head_weights, head_importance_tensor).mean()
if self.calc_hitrates:
self.head_hit_acc, self.head_mean_rank_corr, self.head_max_rank_corr = calculate_hit_metrics(
estimated_importance=head_importance_tensor,
true_importance=attn_head_weights,
top_k_ratio=0.5
)
else:
self.headmsemagn_loss = 0
if self.calc_hitrates:
self.head_hit_acc, self.head_mean_rank_corr, self.head_max_rank_corr = 0, 0, 0
checkeverytime = hasattr(self, 'test_with_thresholds')
if checkeverytime:
checkeverytime = self.test_with_thresholds
if final_mask is not None:
if self.effective_sparsity is None or checkeverytime:
true_mask = final_mask + attention_mask
num_deact = true_mask.bool().sum(dim=-1) # Number of tokens disabled.
causally_deact = (attention_mask.bool()).sum(dim=-1).expand_as(num_deact) # Number of tokens disabled causally anyway
additional_deact = (num_deact - causally_deact)
num_active = (~attention_mask.bool()).sum(dim=-1).expand_as(num_deact) # Number of tokens active at this position if zero-sparsity
effective_sparsity = 100 * (additional_deact.float() / num_active.float()).mean().item()
self.effective_sparsity = effective_sparsity
print("Effective Sparsity:", effective_sparsity, "%\t Sequence Length:", q_len)
if self.layer_idx == 0:
if self.effective_sparsity is None:
self.effective_sparsity = 0.0
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, -1, self.hidden_size)
if self.config.pretraining_tp > 1:
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
else:
attn_output = self.o_proj(attn_output)
if self.producer is None:
try:
q_importance, k_importance = self.sparse_token_predictor(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value, # the same single cache
use_cache=use_cache,
layer_idx=self.layer_idx, # or pass 0
)
if self.train_headpredictor:
head_importances, past_key_value_hp = self.sparse_head_predictor(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value_hp,
use_cache=use_cache
)
head_importances = head_importances.view(bsz, q_len, self.num_heads, self.num_hidden_layers) # [B L H N]
q_len = attn_output.size(1)
k_len = k_importance.size(-1)
except:
print(traceback.format_exc())
import pdb; pdb.set_trace()
self.q_importance = q_importance
self.k_importance = k_importance
if self.train_headpredictor:
if self.head_importances is None:
self.head_importances = head_importances
else:
self.head_importances = torch.cat([self.head_importances, head_importances], dim=1)
# if self.layer_idx == 31:
# if q_len == 1:
# self.dtok += 1
# print(f"Primary Key-Value Shape: {past_key_value.predictor_primary_key[0].shape}, Importance: {past_key_value.predictor_importance_key[0].shape}, Tok-Decoded: {self.dtok}")
# else:
# self.dtok = 0
if not output_attentions:
attn_weights = None
return attn_output, attn_weights
def convert_kvcache_experimental(model, config, producer_frequency):
producer_layer = None
producer_layer_device = None
layer_counter = {'idx': 0}
def recurse_convert(parent_module):
nonlocal producer_layer
nonlocal producer_layer_device
for name, module in parent_module._modules.items():
if len(list(module.children())) > 0:
recurse_convert(module)
if isinstance(module, LlamaAttention):
device = next(module.parameters()).device
dtype = next(module.parameters()).dtype
if layer_counter['idx'] % producer_frequency == 0:
new_module = LlamaAttentionExperimental(config).to(dtype).to(device)
producer_layer = new_module
producer_layer_device = device
else:
new_module = LlamaAttentionExperimental(
config,
producer=producer_layer,
layer_idx=layer_counter['idx']
).to(dtype).to(device)
new_module.load_state_dict(module.state_dict(), strict=False)
is_producer = layer_counter['idx'] % producer_frequency == 0
if is_producer:
print(f"Converted Producer layer '{name}' to LlamaAttentionExperimental at layer index {layer_counter['idx']}")
else:
print(f"Converted layer '{name}' to LlamaAttentionExperimental at layer index {layer_counter['idx']}")
parent_module._modules[name] = new_module
layer_counter['idx'] += 1
recurse_convert(model)
producer_layer = producer_layer.to(producer_layer_device)
return model
# ---------------------------------------------------------------------
# 1) Custom Config subclass
# ---------------------------------------------------------------------
class LlamaButlerConfig(LlamaConfig):
"""
Extends HF's LlamaConfig to hold optional extra parameters for the "Butler" logic.
You can store your custom attributes here, so they can be serialized in config.json.
"""
model_type = "llama_butler"
def __init__(
self,
eval_llm_mode="ExpPred",
token_sparse_method="fixed_50pc",
producer_frequency=8,
dDash=16,
attn_reduce_factor=4,
head_attn_reduce_factor=4,
intdim=256,
flash_attn=False,
train_headpredictor=False,
min_sparse_index=5,
lookahead=0,
sliding_window=None,
**kwargs
):
super().__init__(**kwargs)
self.eval_llm_mode = eval_llm_mode
self.token_sparse_method = token_sparse_method
self.producer_frequency = producer_frequency
self.dDash = dDash
self.attn_reduce_factor = attn_reduce_factor
self.head_attn_reduce_factor = head_attn_reduce_factor
self.intdim = intdim
self.flash_attn = flash_attn
self.train_headpredictor = train_headpredictor
self.min_sparse_index = min_sparse_index
self.lookahead = lookahead
self.sliding_window = sliding_window
# ---------------------------------------------------------------------
# 2) The main Butler model class
# ---------------------------------------------------------------------
class LlamaButlerForCausalLM(LlamaForCausalLM):
"""
A subclass of HF's LlamaForCausalLM that:
- Patches each LlamaAttention to your LlamaAttentionExperimental
- Sets specialized attributes (eval_llm_mode, etc.)
- Overrides _prepare_cache_for_generation to inject PredictorDynamicCache
"""
# Let HF auto-detect this config class from config.json:
config_class = LlamaButlerConfig
def __init__(self, config: LlamaButlerConfig):
super().__init__(config)
"""
HF's LlamaForCausalLM initializes:
self.model = LlamaModel(config)
self.lm_head = nn.Linear(...)
"""
# 1) Patch the underlying LlamaModel to replace LlamaAttention with LlamaAttentionExperimental
self.model = convert_kvcache_experimental(
self.model,
config,
config.producer_frequency
)
# 2) Optionally, set per-module attributes so each LlamaAttentionExperimental knows about them:
for module in self.model.modules():
if module.__class__.__name__.endswith("AttentionExperimental"):
# Set these from your config. Or you can hardcode them if you prefer.
module.eval_llm_mode = config.eval_llm_mode
module.token_sparse_method = config.token_sparse_method
module.set_token_sparsity() # e.g. sets module.sparse_aggression
module.producer_frequency = config.producer_frequency
module.dDash = config.dDash
module.attn_reduce_factor = config.attn_reduce_factor
module.head_attn_reduce_factor = config.head_attn_reduce_factor
module.intdim = config.intdim
module.flash_attn = config.flash_attn
module.train_headpredictor = config.train_headpredictor
module.min_sparse_index = config.min_sparse_index
module.lookahead = config.lookahead
module.sliding_window = config.sliding_window
module.num_layers_pred = config.producer_frequency # example usage
# If this is a "producer layer" (mod.layer_idx % freq == 0), run update_predictor():
if hasattr(module, "layer_idx") and (module.layer_idx % config.producer_frequency == 0):
module.update_predictor()
# 3) Patch the dynamic cache (past_key_values) creation. For your evaluation modes:
if config.eval_llm_mode in ["ExpPred", "ReplAttn"]:
self._prepare_cache_for_generation = self._patched_prepare_cache_for_generation.__get__(
self, self.__class__
)
# -----------------------------------------------------------------
# 3) The custom `_prepare_cache_for_generation` override
# -----------------------------------------------------------------
def _patched_prepare_cache_for_generation(
self,
generation_config: GenerationConfig,
model_kwargs: Dict,
*args,
**kwargs
):
"""
This override injects a PredictorDynamicCache
in place of the standard 'past_key_values'.
"""
if "past_key_values" not in model_kwargs or model_kwargs["past_key_values"] is None:
model_kwargs["past_key_values"] = PredictorDynamicCache()
return model_kwargs