Commit
·
d00164e
1
Parent(s):
6896657
base files
Browse files- conversion.py +88 -0
- generation_config.json +6 -0
- modeling_llama_butler.py +1434 -0
- pytorch_model.bin.index.json +0 -0
- tokenizer.json +0 -0
- tokenizer_config.json +35 -0
conversion.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import LlamaForCausalLM, LlamaConfig, AutoTokenizer
|
2 |
+
import torch
|
3 |
+
import os
|
4 |
+
|
5 |
+
# huggingface-cli download deepseek-ai/DeepSeek-R1-Distill-Llama-8B tokenizer_config.json --local-dir ./
|
6 |
+
# huggingface-cli download deepseek-ai/DeepSeek-R1-Distill-Llama-8B tokenizer.json --local-dir ./
|
7 |
+
|
8 |
+
question = "A $y$-intercept is a point on the graph that lies on the $y$-axis, so $x = 0$. Hence, the number $y$-intercepts corresponds to the number of real solutions of the quadratic equation $y^2 - 4y - 1 = 0$. The discriminant of this quadratic equation is $(-4)^2 + 4 \cdot 1 \cdot (-1) = 20$, which is positive, so the quadratic has two distinct real roots. Therefore, the number of $y$-intercepts is $\boxed{2}$. \n \n [asy] \n size(150); \n real ticklen=3; \n real tickspace=2; \n \n real ticklength=0.1cm; \n real axisarrowsize=0.14cm; \n pen axispen=black+1.3bp; \n real vectorarrowsize=0.2cm; \n real tickdown=-0.5; \n real tickdownlength=-0.15inch; \n real tickdownbase=0.3; \n real wholetickdown=tickdown; \n void rr_cartesian_axes(real xleft, real xright, real ybottom, real ytop, real xstep=1, real ystep=1, bool \n \n useticks=false, bool complexplane=false, bool usegrid=true) { \n \n import graph; \n \n real i; \n \n if(complexplane) { \n \n label('$\textnormal{Re}$',(xright,0),SE); \n \n label('$\textnormal{Im}$',(0,ytop),NW); \n \n } else { \n \n label('$x$',(xright+0.4,-0.5)); \n \n label('$y$',(-0.5,ytop+0.2)); \n \n } \n \n ylimits(ybottom,ytop); \n \n xlimits( xleft, xright); \n \n real[] TicksArrx,TicksArry; \n \n for(i=xleft+xstep; i<xright; i+=xstep) { \n \n if(abs(i) >0.1) { \n \n TicksArrx.push(i); \n \n } \n \n } \n \n for(i=ybottom+ystep; i<ytop; i+=ystep) { \n \n if(abs(i) >0.1) { \n \n TicksArry.push(i); \n \n } \n \n } \n \n if(usegrid) {"
|
9 |
+
predictor_load_path = "/home/ya255/projects/TokenButler/expt_model/TrainTokenButler_42_finetune_None_None_500_llama_deepseek-ai_DeepSeek-R1-Distill-Llama-8B_L3_8B_R1_1K.csv_L3_8B_R1_1K_False_False_2000_False_redpajama_1024_1_1_20_0.001_1024/16_False_4_1000_ExpPred_fixed_40pc_True_False_0_None_False_False_4_8_2_32_1024_False_False_True_32_0.3875000000000002__best.pt"
|
10 |
+
base_model_name = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
|
11 |
+
|
12 |
+
def get_producer_layers(model):
|
13 |
+
"""
|
14 |
+
Traverses the model to find the producer layer (layer_idx=0).cc
|
15 |
+
"""
|
16 |
+
producer_modules = []
|
17 |
+
for module in model.modules():
|
18 |
+
if module.__class__.__name__.endswith("AttentionExperimental") and module.layer_idx == 0:
|
19 |
+
producer_modules.append(module)
|
20 |
+
return producer_modules
|
21 |
+
|
22 |
+
# 1) Load the base model from HF
|
23 |
+
base_model = LlamaForCausalLM.from_pretrained(base_model_name, device_map="auto")
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
25 |
+
inputs = tokenizer(question, return_tensors="pt")
|
26 |
+
inputs = {k: v.to(base_model.device) for k, v in inputs.items()}
|
27 |
+
question_length = inputs['attention_mask'].shape[1]
|
28 |
+
|
29 |
+
with torch.no_grad():
|
30 |
+
base_output_ids = base_model.generate(
|
31 |
+
**inputs,
|
32 |
+
max_new_tokens=200,
|
33 |
+
do_sample=True,
|
34 |
+
top_p=0.95,
|
35 |
+
temperature=0.7,
|
36 |
+
)
|
37 |
+
base_output_text = tokenizer.decode(base_output_ids[0][question_length:], skip_special_tokens=True)
|
38 |
+
|
39 |
+
# Remove base model from GPU
|
40 |
+
base_model_device = base_model.device
|
41 |
+
base_model.to("cpu")
|
42 |
+
base_state_dict = base_model.state_dict()
|
43 |
+
del base_model
|
44 |
+
torch.cuda.empty_cache()
|
45 |
+
|
46 |
+
from modeling_llama_butler import LlamaButlerConfig, LlamaButlerForCausalLM
|
47 |
+
butler_config = LlamaButlerConfig.from_pretrained('config.json')
|
48 |
+
|
49 |
+
butler_model = LlamaButlerForCausalLM(butler_config)
|
50 |
+
butler_model.load_state_dict(base_state_dict, strict=False)
|
51 |
+
|
52 |
+
model_producer_layers = get_producer_layers(butler_model)
|
53 |
+
producer_layer_weights = torch.load(predictor_load_path)
|
54 |
+
for idx, producer_layer_weight in enumerate(producer_layer_weights):
|
55 |
+
try:
|
56 |
+
model_producer_layers[idx].load_state_dict(producer_layer_weight, strict=False)
|
57 |
+
except Exception as e:
|
58 |
+
print(f"Error loading producer layer {idx}: {e}")
|
59 |
+
print("\n\nContinuing... !! Bad Perf If Unintentional !!\n\n")
|
60 |
+
|
61 |
+
|
62 |
+
butler_model.to(base_model_device)
|
63 |
+
butler_model.eval()
|
64 |
+
|
65 |
+
with torch.no_grad():
|
66 |
+
butler_output_ids = butler_model.generate(
|
67 |
+
**inputs,
|
68 |
+
max_new_tokens=200,
|
69 |
+
do_sample=True,
|
70 |
+
top_p=0.95,
|
71 |
+
temperature=0.7,
|
72 |
+
)
|
73 |
+
|
74 |
+
butler_output_text = tokenizer.decode(butler_output_ids[0][question_length:], skip_special_tokens=True)
|
75 |
+
|
76 |
+
print("\n=== Base Model Output (Newlines Removed For Brevity) ===\n")
|
77 |
+
print(base_output_text.replace("\n", ""))
|
78 |
+
print("\n")
|
79 |
+
print("=== Butler Model Output (Newlines Removed For Brevity) ===\n")
|
80 |
+
print(butler_output_text.replace("\n", ""))
|
81 |
+
print("\n")
|
82 |
+
|
83 |
+
OUTPUT_DIR = "."
|
84 |
+
print(f"\nSaving final merged model to: {OUTPUT_DIR}")
|
85 |
+
butler_model.save_pretrained(OUTPUT_DIR, safe_serialization=False)
|
86 |
+
|
87 |
+
# tokenizer.save_pretrained(OUTPUT_DIR)
|
88 |
+
print("\nAll done! The folder should now have `pytorch_model.bin` and the updated `config.json`.\n")
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 128000,
|
4 |
+
"eos_token_id": 128001,
|
5 |
+
"transformers_version": "4.48.3"
|
6 |
+
}
|
modeling_llama_butler.py
ADDED
@@ -0,0 +1,1434 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from typing import Dict
|
4 |
+
from transformers import LlamaForCausalLM, LlamaConfig
|
5 |
+
from transformers.generation.utils import GenerationConfig
|
6 |
+
import os
|
7 |
+
import pdb
|
8 |
+
import copy
|
9 |
+
import math
|
10 |
+
import numpy as np
|
11 |
+
from dataclasses import dataclass
|
12 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
13 |
+
import gc
|
14 |
+
|
15 |
+
import traceback
|
16 |
+
import torch
|
17 |
+
from torch import nn
|
18 |
+
import torch.utils.checkpoint
|
19 |
+
import torch.nn.functional as F
|
20 |
+
from torch.cuda.amp import autocast
|
21 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
22 |
+
|
23 |
+
from transformers.models.llama.configuration_llama import LlamaConfig
|
24 |
+
from transformers.models.llama.modeling_llama import LlamaRotaryEmbedding, LlamaAttention, apply_rotary_pos_emb
|
25 |
+
|
26 |
+
from transformers.cache_utils import DynamicCache
|
27 |
+
|
28 |
+
class PredictorDynamicCache(DynamicCache):
|
29 |
+
def __init__(self):
|
30 |
+
super().__init__()
|
31 |
+
self.predictor_primary_key: List[Optional[torch.Tensor]] = []
|
32 |
+
self.predictor_primary_value: List[Optional[torch.Tensor]] = []
|
33 |
+
self.predictor_importance_key: List[Optional[torch.Tensor]] = []
|
34 |
+
|
35 |
+
def update_predictor_primary(
|
36 |
+
self,
|
37 |
+
key_states: torch.Tensor,
|
38 |
+
value_states: torch.Tensor,
|
39 |
+
layer_idx: int,
|
40 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
41 |
+
"""
|
42 |
+
Append or create the predictor's "primary" K/V states for `layer_idx`.
|
43 |
+
|
44 |
+
shape for key_states, value_states is typically [batch_size, num_heads, seq_len, head_dim].
|
45 |
+
"""
|
46 |
+
# Extend the lists so that `predictor_primary_key[layer_idx]` and
|
47 |
+
# `predictor_primary_value[layer_idx]` exist.
|
48 |
+
self._ensure_list_capacity(
|
49 |
+
self.predictor_primary_key, layer_idx, fill=None
|
50 |
+
)
|
51 |
+
self._ensure_list_capacity(
|
52 |
+
self.predictor_primary_value, layer_idx, fill=None
|
53 |
+
)
|
54 |
+
|
55 |
+
# If this is the very first time we are updating that layer's predictor cache, just assign
|
56 |
+
if self.predictor_primary_key[layer_idx] is None:
|
57 |
+
self.predictor_primary_key[layer_idx] = key_states
|
58 |
+
self.predictor_primary_value[layer_idx] = value_states
|
59 |
+
else:
|
60 |
+
# Otherwise, concatenate along the seq_len dimension (=-2 or =2 depending on your shape).
|
61 |
+
self.predictor_primary_key[layer_idx] = torch.cat(
|
62 |
+
[self.predictor_primary_key[layer_idx], key_states], dim=2
|
63 |
+
)
|
64 |
+
self.predictor_primary_value[layer_idx] = torch.cat(
|
65 |
+
[self.predictor_primary_value[layer_idx], value_states], dim=2
|
66 |
+
)
|
67 |
+
|
68 |
+
return (
|
69 |
+
self.predictor_primary_key[layer_idx],
|
70 |
+
self.predictor_primary_value[layer_idx],
|
71 |
+
)
|
72 |
+
|
73 |
+
def update_predictor_importance(
|
74 |
+
self,
|
75 |
+
key_states: torch.Tensor,
|
76 |
+
layer_idx: int,
|
77 |
+
) -> torch.Tensor:
|
78 |
+
"""
|
79 |
+
Append or create the predictor's "importance" key for `layer_idx`.
|
80 |
+
"""
|
81 |
+
self._ensure_list_capacity(
|
82 |
+
self.predictor_importance_key, layer_idx, fill=None
|
83 |
+
)
|
84 |
+
|
85 |
+
if self.predictor_importance_key[layer_idx] is None:
|
86 |
+
self.predictor_importance_key[layer_idx] = key_states
|
87 |
+
else:
|
88 |
+
self.predictor_importance_key[layer_idx] = torch.cat(
|
89 |
+
[self.predictor_importance_key[layer_idx], key_states], dim=2
|
90 |
+
)
|
91 |
+
return self.predictor_importance_key[layer_idx]
|
92 |
+
|
93 |
+
def crop(self, max_length: int):
|
94 |
+
super().crop(max_length)
|
95 |
+
# Now also crop predictor caches
|
96 |
+
for idx in range(len(self.predictor_primary_key)):
|
97 |
+
if self.predictor_primary_key[idx] is not None:
|
98 |
+
self.predictor_primary_key[idx] = self.predictor_primary_key[idx][..., :max_length, :]
|
99 |
+
self.predictor_primary_value[idx] = self.predictor_primary_value[idx][..., :max_length, :]
|
100 |
+
|
101 |
+
for idx in range(len(self.predictor_importance_key)):
|
102 |
+
if self.predictor_importance_key[idx] is not None:
|
103 |
+
self.predictor_importance_key[idx] = self.predictor_importance_key[idx][..., :max_length, :]
|
104 |
+
|
105 |
+
# Remember to adjust self._seen_tokens accordingly
|
106 |
+
self._seen_tokens = min(self._seen_tokens, max_length)
|
107 |
+
|
108 |
+
def batch_split(
|
109 |
+
self, full_batch_size: int, split_size: int, num_hidden_layers: int = None
|
110 |
+
) -> List["PredictorDynamicCache"]:
|
111 |
+
# Use the base split logic for the standard K/V
|
112 |
+
base_splits = super().batch_split(full_batch_size, split_size, num_hidden_layers)
|
113 |
+
# `base_splits` is now a list of new DynamicCache objects. But we *actually*
|
114 |
+
# want them to be PredictorDynamicCache so we can store the predictor states.
|
115 |
+
# Easiest: we can cast and fill them.
|
116 |
+
out: List[PredictorDynamicCache] = []
|
117 |
+
|
118 |
+
for split_i, base_split in enumerate(base_splits):
|
119 |
+
# Construct an empty PredictorDynamicCache
|
120 |
+
new_cache = PredictorDynamicCache()
|
121 |
+
# Copy over the underlying fields from base_split
|
122 |
+
new_cache.key_cache = base_split.key_cache
|
123 |
+
new_cache.value_cache = base_split.value_cache
|
124 |
+
new_cache._seen_tokens = base_split._seen_tokens
|
125 |
+
|
126 |
+
# Now also slice our predictor fields
|
127 |
+
# The slice in batch dim is [i:i+split_size].
|
128 |
+
b_start = split_i * split_size
|
129 |
+
b_end = min(full_batch_size, b_start + split_size)
|
130 |
+
|
131 |
+
new_cache.predictor_primary_key = self._slice_list_tensors(
|
132 |
+
self.predictor_primary_key, b_start, b_end
|
133 |
+
)
|
134 |
+
new_cache.predictor_primary_value = self._slice_list_tensors(
|
135 |
+
self.predictor_primary_value, b_start, b_end
|
136 |
+
)
|
137 |
+
new_cache.predictor_importance_key = self._slice_list_tensors(
|
138 |
+
self.predictor_importance_key, b_start, b_end
|
139 |
+
)
|
140 |
+
|
141 |
+
out.append(new_cache)
|
142 |
+
|
143 |
+
return out
|
144 |
+
|
145 |
+
@classmethod
|
146 |
+
def from_batch_splits(cls, splits: List["PredictorDynamicCache"], num_hidden_layers: int = None) -> "PredictorDynamicCache":
|
147 |
+
# Let the base class handle the normal K/V merges
|
148 |
+
base_merged = DynamicCache.from_batch_splits(splits, num_hidden_layers=num_hidden_layers)
|
149 |
+
merged = cls()
|
150 |
+
merged.key_cache = base_merged.key_cache
|
151 |
+
merged.value_cache = base_merged.value_cache
|
152 |
+
merged._seen_tokens = base_merged._seen_tokens
|
153 |
+
|
154 |
+
# Now unify predictor states by concatenating along batch dim=0
|
155 |
+
merged.predictor_primary_key = cls._merge_list_tensors(
|
156 |
+
[split.predictor_primary_key for split in splits]
|
157 |
+
)
|
158 |
+
merged.predictor_primary_value = cls._merge_list_tensors(
|
159 |
+
[split.predictor_primary_value for split in splits]
|
160 |
+
)
|
161 |
+
merged.predictor_importance_key = cls._merge_list_tensors(
|
162 |
+
[split.predictor_importance_key for split in splits]
|
163 |
+
)
|
164 |
+
|
165 |
+
return merged
|
166 |
+
|
167 |
+
def batch_repeat_interleave(self, repeats: int):
|
168 |
+
super().batch_repeat_interleave(repeats)
|
169 |
+
self.predictor_primary_key = self._repeat_list_tensors(
|
170 |
+
self.predictor_primary_key, repeats
|
171 |
+
)
|
172 |
+
self.predictor_primary_value = self._repeat_list_tensors(
|
173 |
+
self.predictor_primary_value, repeats
|
174 |
+
)
|
175 |
+
self.predictor_importance_key = self._repeat_list_tensors(
|
176 |
+
self.predictor_importance_key, repeats
|
177 |
+
)
|
178 |
+
|
179 |
+
def batch_select_indices(self, indices: torch.Tensor):
|
180 |
+
super().batch_select_indices(indices)
|
181 |
+
self.predictor_primary_key = self._select_list_tensors(
|
182 |
+
self.predictor_primary_key, indices
|
183 |
+
)
|
184 |
+
self.predictor_primary_value = self._select_list_tensors(
|
185 |
+
self.predictor_primary_value, indices
|
186 |
+
)
|
187 |
+
self.predictor_importance_key = self._select_list_tensors(
|
188 |
+
self.predictor_importance_key, indices
|
189 |
+
)
|
190 |
+
|
191 |
+
@staticmethod
|
192 |
+
def _ensure_list_capacity(lst: list, idx: int, fill=None):
|
193 |
+
if len(lst) <= idx:
|
194 |
+
lst.extend([fill] * (idx + 1 - len(lst)))
|
195 |
+
|
196 |
+
@staticmethod
|
197 |
+
def _slice_list_tensors(
|
198 |
+
tensor_list: List[Optional[torch.Tensor]], start: int, end: int
|
199 |
+
) -> List[Optional[torch.Tensor]]:
|
200 |
+
out = []
|
201 |
+
for t in tensor_list:
|
202 |
+
if t is None:
|
203 |
+
out.append(None)
|
204 |
+
else:
|
205 |
+
out.append(t[start:end, ...])
|
206 |
+
return out
|
207 |
+
|
208 |
+
@classmethod
|
209 |
+
def _merge_list_tensors(
|
210 |
+
cls, list_of_lists: List[List[Optional[torch.Tensor]]]
|
211 |
+
) -> List[Optional[torch.Tensor]]:
|
212 |
+
# If no splits, return empty
|
213 |
+
if not list_of_lists:
|
214 |
+
return []
|
215 |
+
|
216 |
+
# Number of layers is length of the sub-list from the first split
|
217 |
+
max_len = len(list_of_lists[0])
|
218 |
+
merged = [None] * max_len
|
219 |
+
|
220 |
+
for layer_idx in range(max_len):
|
221 |
+
# collect that layer_idx from each split
|
222 |
+
chunk_tensors = []
|
223 |
+
for split in list_of_lists:
|
224 |
+
t = split[layer_idx] if layer_idx < len(split) else None
|
225 |
+
if t is not None:
|
226 |
+
chunk_tensors.append(t)
|
227 |
+
if len(chunk_tensors) == 0:
|
228 |
+
merged[layer_idx] = None
|
229 |
+
else:
|
230 |
+
merged[layer_idx] = torch.cat(chunk_tensors, dim=0)
|
231 |
+
return merged
|
232 |
+
|
233 |
+
@staticmethod
|
234 |
+
def _repeat_list_tensors(
|
235 |
+
tensor_list: List[Optional[torch.Tensor]], repeats: int
|
236 |
+
) -> List[Optional[torch.Tensor]]:
|
237 |
+
out = []
|
238 |
+
for t in tensor_list:
|
239 |
+
if t is None:
|
240 |
+
out.append(None)
|
241 |
+
else:
|
242 |
+
out.append(t.repeat_interleave(repeats, dim=0))
|
243 |
+
return out
|
244 |
+
|
245 |
+
@staticmethod
|
246 |
+
def _select_list_tensors(
|
247 |
+
tensor_list: List[Optional[torch.Tensor]], indices: torch.Tensor
|
248 |
+
) -> List[Optional[torch.Tensor]]:
|
249 |
+
out = []
|
250 |
+
for t in tensor_list:
|
251 |
+
if t is None:
|
252 |
+
out.append(None)
|
253 |
+
else:
|
254 |
+
out.append(t.index_select(0, indices))
|
255 |
+
return out
|
256 |
+
|
257 |
+
|
258 |
+
class TokenImportancePredictorAttentive(nn.Module):
|
259 |
+
def __init__(self, config, pred_hid_size, num_heads, num_hidden_layers, dDash, intdim, \
|
260 |
+
attn_reduce_factor, dropout=0.1):
|
261 |
+
"""
|
262 |
+
Optimized Token Importance Predictor with parallel Q-K projections and simplified mapping.
|
263 |
+
|
264 |
+
Args:
|
265 |
+
config: Configuration object containing model parameters.
|
266 |
+
pred_hid_size (int): Hidden size for the predictor's attention layer.
|
267 |
+
num_heads (int): Number of attention heads.
|
268 |
+
num_hidden_layers (int): Number of transformer layers to predict.
|
269 |
+
dropout (float): Dropout probability.
|
270 |
+
q_downscale (int): Factor to downscale the Q dimension for efficiency.
|
271 |
+
intermediate_dim (int): Intermediate dimension for non-linear transformations in projections.
|
272 |
+
"""
|
273 |
+
super().__init__()
|
274 |
+
self.config = config
|
275 |
+
self.hidden_size = pred_hid_size
|
276 |
+
self.num_heads = num_heads
|
277 |
+
self.num_hidden_layers = num_hidden_layers
|
278 |
+
self.dropout = dropout
|
279 |
+
self.head_dim = pred_hid_size // (num_heads * 4) # Predictor head dimension is not the same as the model head dimension.
|
280 |
+
self.rope_theta = config.rope_theta
|
281 |
+
self.dDash = dDash
|
282 |
+
self.intermediate_dim = intdim
|
283 |
+
self.attn_reduce_factor = attn_reduce_factor
|
284 |
+
self.max_position_embeddings = config.max_position_embeddings
|
285 |
+
self.flash_attn = False
|
286 |
+
assert pred_hid_size % (num_heads * 4) == 0, "pred_hid_size must be divisible by num_heads * 4."
|
287 |
+
|
288 |
+
# Reduce the hidden size for attention computations
|
289 |
+
self.hidden_size_reduced = self.hidden_size // self.attn_reduce_factor # For example, reduce to 1/4th
|
290 |
+
assert self.hidden_size_reduced % self.num_heads == 0, "Reduced hidden size must be divisible by num_heads"
|
291 |
+
self.attn_head_dim = self.hidden_size_reduced // self.num_heads
|
292 |
+
|
293 |
+
# Input projection to reduce hidden size
|
294 |
+
self.input_proj = nn.Linear(self.hidden_size, self.hidden_size_reduced, bias=False)
|
295 |
+
|
296 |
+
# Query, Key, Value projections for attention
|
297 |
+
self.q_proj_attn = nn.Linear(self.hidden_size_reduced, self.hidden_size_reduced, bias=False)
|
298 |
+
self.k_proj_attn = nn.Linear(self.hidden_size_reduced, self.hidden_size_reduced, bias=False)
|
299 |
+
self.v_proj_attn = nn.Linear(self.hidden_size_reduced, self.hidden_size_reduced, bias=False)
|
300 |
+
# Output projection to restore hidden size
|
301 |
+
# self.o_proj_attn = nn.Linear(self.hidden_size_reduced, self.hidden_size_reduced, bias=False)
|
302 |
+
self.attn_dropout = nn.Dropout(self.dropout)
|
303 |
+
|
304 |
+
# LayerNorm and Feed-forward network
|
305 |
+
self.norm1 = nn.LayerNorm(self.hidden_size_reduced)
|
306 |
+
self.norm2 = nn.LayerNorm(self.hidden_size)
|
307 |
+
|
308 |
+
self.ffn_hidden_size = 2 * self.hidden_size_reduced # Typical FFN hidden size
|
309 |
+
self.ffn = nn.Sequential(
|
310 |
+
nn.Linear(self.hidden_size_reduced, self.ffn_hidden_size),
|
311 |
+
nn.GELU(),
|
312 |
+
nn.Linear(self.ffn_hidden_size, self.hidden_size),
|
313 |
+
nn.Dropout(self.dropout)
|
314 |
+
)
|
315 |
+
# Add extra LayerNorm for the importance branch when not using the old design.
|
316 |
+
self.norm_importance = nn.LayerNorm(self.hidden_size)
|
317 |
+
|
318 |
+
# Define Q and K projection layers for all layers in parallel with non-linearity[]
|
319 |
+
# Output shape: [B, L, N * H * D']
|
320 |
+
self.q_proj_importance = nn.Sequential(
|
321 |
+
nn.Linear(pred_hid_size, self.intermediate_dim, bias=False),
|
322 |
+
nn.SiLU(),
|
323 |
+
nn.Linear(self.intermediate_dim, num_hidden_layers * num_heads * self.dDash, bias=False)
|
324 |
+
)
|
325 |
+
self.k_proj_importance = nn.Sequential(
|
326 |
+
nn.Linear(pred_hid_size, self.intermediate_dim, bias=False),
|
327 |
+
nn.SiLU(),
|
328 |
+
nn.Linear(self.intermediate_dim, num_hidden_layers * num_heads * self.dDash, bias=False)
|
329 |
+
)
|
330 |
+
|
331 |
+
# Initialize rotary positional embeddings
|
332 |
+
self._init_rope()
|
333 |
+
self._initialize_weights()
|
334 |
+
self.device = None
|
335 |
+
|
336 |
+
def _initialize_weights(self):
|
337 |
+
for name, module in self.named_modules():
|
338 |
+
if isinstance(module, nn.Linear):
|
339 |
+
nn.init.xavier_uniform_(module.weight) # Xavier initialization for linear layers
|
340 |
+
if module.bias is not None:
|
341 |
+
nn.init.constant_(module.bias, 0)
|
342 |
+
elif isinstance(module, nn.LayerNorm):
|
343 |
+
nn.init.constant_(module.weight, 1.0)
|
344 |
+
nn.init.constant_(module.bias, 0.0)
|
345 |
+
elif isinstance(module, nn.MultiheadAttention):
|
346 |
+
# Initialize in_proj_weight
|
347 |
+
nn.init.xavier_uniform_(module.in_proj_weight)
|
348 |
+
if module.in_proj_bias is not None:
|
349 |
+
nn.init.constant_(module.in_proj_bias, 0)
|
350 |
+
|
351 |
+
# Initialize out_proj
|
352 |
+
nn.init.xavier_uniform_(module.out_proj.weight)
|
353 |
+
if module.out_proj.bias is not None:
|
354 |
+
nn.init.constant_(module.out_proj.bias, 0)
|
355 |
+
|
356 |
+
def _init_rope(self):
|
357 |
+
|
358 |
+
# send self.config but after modifying head_dim to be self.head_dim just in the function call
|
359 |
+
config_copy = copy.deepcopy(self.config)
|
360 |
+
config_copy.rope_scaling = {
|
361 |
+
"factor": 32.0,
|
362 |
+
"high_freq_factor": 4.0,
|
363 |
+
"low_freq_factor": 1.0,
|
364 |
+
"original_max_position_embeddings": 8192,
|
365 |
+
"rope_type": "llama3"
|
366 |
+
}
|
367 |
+
config_copy.head_dim = self.attn_head_dim
|
368 |
+
|
369 |
+
# Rotary embedding for attention layer
|
370 |
+
self.rotary_emb_attn = LlamaRotaryEmbedding(
|
371 |
+
config_copy
|
372 |
+
)
|
373 |
+
|
374 |
+
config_copy.head_dim = self.dDash
|
375 |
+
# Rotary embedding for importance projection
|
376 |
+
self.rotary_emb_importance = LlamaRotaryEmbedding(
|
377 |
+
config_copy
|
378 |
+
)
|
379 |
+
|
380 |
+
def forward(self, hidden_states, attention_mask=None, position_ids=None, past_key_value=None, use_cache=False, layer_idx=None):
|
381 |
+
"""
|
382 |
+
Forward pass for the Optimized Token Importance Predictor.
|
383 |
+
|
384 |
+
Args:
|
385 |
+
hidden_states (torch.Tensor): Input tensor of shape [B, L, HQ].
|
386 |
+
attention_mask (torch.Tensor, optional): Attention mask of shape [B, 1, 1, L] or [B, 1, L, L].
|
387 |
+
position_ids (torch.Tensor, optional): Position IDs.
|
388 |
+
past_key_value (tuple, optional): Past key and value states.
|
389 |
+
use_cache (bool, optional): Whether to use cache.
|
390 |
+
|
391 |
+
Returns:
|
392 |
+
torch.Tensor: Importance scores of shape [B, N, H, L, L].
|
393 |
+
"""
|
394 |
+
layer_idx = 0 # Guaranteed to be 0, as we only have one predictor!
|
395 |
+
|
396 |
+
# Set device if not already set
|
397 |
+
if self.device != hidden_states.device:
|
398 |
+
self.device = hidden_states.device
|
399 |
+
self.to(self.device)
|
400 |
+
|
401 |
+
B, L, E = hidden_states.size()
|
402 |
+
|
403 |
+
# Reduce hidden size
|
404 |
+
hidden_states = hidden_states.to(self.input_proj.weight.dtype)
|
405 |
+
hidden_states_reduced = self.input_proj(hidden_states) # [B, L, hidden_size_reduced]
|
406 |
+
# Compute q, k, v for attention
|
407 |
+
q = self.q_proj_attn(hidden_states_reduced) # [B, L, hidden_size_reduced]
|
408 |
+
k = self.k_proj_attn(hidden_states_reduced) # [B, L, hidden_size_reduced]
|
409 |
+
v = self.v_proj_attn(hidden_states_reduced) # [B, L, hidden_size_reduced]
|
410 |
+
# Reshape q, k, v to [B, num_heads, L, attn_head_dim]
|
411 |
+
q = q.view(B, L, self.num_heads, self.attn_head_dim).transpose(1, 2) # [B, num_heads, L, attn_head_dim]
|
412 |
+
k = k.view(B, L, self.num_heads, self.attn_head_dim).transpose(1, 2) # [B, num_heads, L, attn_head_dim]
|
413 |
+
v = v.view(B, L, self.num_heads, self.attn_head_dim).transpose(1, 2) # [B, num_heads, L, attn_head_dim]
|
414 |
+
if (past_key_value is not None
|
415 |
+
and layer_idx < len(past_key_value.predictor_primary_key)
|
416 |
+
and past_key_value.predictor_primary_key[layer_idx] is not None):
|
417 |
+
offset = past_key_value.predictor_primary_key[layer_idx].shape[2] # old_k.shape[2]
|
418 |
+
else:
|
419 |
+
offset = 0
|
420 |
+
|
421 |
+
# total seq length for new + old
|
422 |
+
kv_seq_len = offset + L
|
423 |
+
|
424 |
+
# Step 2: build position_ids for just the new chunk [offset..offset+L-1]
|
425 |
+
if position_ids is None:
|
426 |
+
# shape [B, L], e.g. [0..(offset+L-1)]
|
427 |
+
position_ids = torch.arange(offset, offset + L, dtype=torch.long, device=self.device)
|
428 |
+
position_ids = position_ids.unsqueeze(0).expand(B, L)
|
429 |
+
|
430 |
+
# Step 3: apply rotary to just the new chunk k,v with the correct offset
|
431 |
+
cos, sin = self.rotary_emb_attn(v, position_ids)
|
432 |
+
q, k = apply_rotary_pos_emb(q, k, cos, sin, position_ids)
|
433 |
+
|
434 |
+
# Step 4: ask the cache to append them. Then re‐assign k, v to the full cat
|
435 |
+
if use_cache and past_key_value is not None:
|
436 |
+
k, v = past_key_value.update_predictor_primary(k.detach(), v.detach(), layer_idx)
|
437 |
+
kv_seq_len = k.size(2) # now includes old + new
|
438 |
+
|
439 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, is_causal=True)
|
440 |
+
attn_output = attn_output.to(q.dtype)
|
441 |
+
attn_output = attn_output.transpose(1, 2).contiguous().view(B, L, self.hidden_size_reduced)
|
442 |
+
attn_output = self.norm1(attn_output)
|
443 |
+
ffn_output = self.ffn(attn_output)
|
444 |
+
# Temporary measure, till old predictor fully deprecated
|
445 |
+
hidden_states = self.norm2(hidden_states + ffn_output)
|
446 |
+
|
447 |
+
B, L, E = hidden_states.size()
|
448 |
+
# Importance projections
|
449 |
+
H = self.num_heads
|
450 |
+
N = self.num_hidden_layers
|
451 |
+
|
452 |
+
hidden_states_for_importance = self.norm_importance(hidden_states)
|
453 |
+
q_importance = self.q_proj_importance(hidden_states_for_importance)
|
454 |
+
k_importance = self.k_proj_importance(hidden_states_for_importance)
|
455 |
+
|
456 |
+
# Reshape and permute to [B, N, H, L, D']
|
457 |
+
q_importance = q_importance.view(B, L, N, H, self.dDash).permute(0, 2, 3, 1, 4).contiguous() # [B, N, H, L, D']
|
458 |
+
k_importance = k_importance.view(B, L, N, H, self.dDash).permute(0, 2, 3, 1, 4).contiguous() # [B, N, H, L, D']
|
459 |
+
|
460 |
+
# Flatten N and H for efficient computation
|
461 |
+
q_importance = q_importance.view(B * N * H, L, self.dDash) # [BNH, L, D']
|
462 |
+
k_importance = k_importance.view(B * N * H, L, self.dDash) # [BNH, L, D']
|
463 |
+
|
464 |
+
# Apply rotary positional embeddings
|
465 |
+
cos, sin = self.rotary_emb_importance(k_importance, position_ids)
|
466 |
+
q_importance, k_importance = apply_rotary_pos_emb(q_importance, k_importance, cos, sin, position_ids)
|
467 |
+
|
468 |
+
if use_cache and past_key_value is not None:
|
469 |
+
k_importance = past_key_value.update_predictor_importance(k_importance.detach(), layer_idx)
|
470 |
+
|
471 |
+
k_importance = k_importance.view(B * H, N, -1, self.dDash) # [BNH, L, D']
|
472 |
+
q_importance = q_importance.view(B * H, N, -1, self.dDash) # [BH, N, L, D']
|
473 |
+
return q_importance, k_importance
|
474 |
+
|
475 |
+
|
476 |
+
|
477 |
+
class HeadImportancePredictor(nn.Module):
|
478 |
+
def __init__(self, config, pred_hid_size, num_heads, num_hidden_layers, dDash, intdim, \
|
479 |
+
attn_reduce_factor, dropout=0.1):
|
480 |
+
"""
|
481 |
+
Optimized Token Importance Predictor with parallel Q-K projections and simplified mapping.
|
482 |
+
|
483 |
+
Args:
|
484 |
+
config: Configuration object containing model parameters.
|
485 |
+
pred_hid_size (int): Hidden size for the predictor's attention layer.
|
486 |
+
num_heads (int): Number of attention heads.
|
487 |
+
num_hidden_layers (int): Number of transformer layers to predict.
|
488 |
+
dropout (float): Dropout probability.
|
489 |
+
q_downscale (int): Factor to downscale the Q dimension for efficiency.
|
490 |
+
intermediate_dim (int): Intermediate dimension for non-linear transformations in projections.
|
491 |
+
"""
|
492 |
+
super().__init__()
|
493 |
+
self.is_head_predictor = None
|
494 |
+
self.config = config
|
495 |
+
self.hidden_size = pred_hid_size
|
496 |
+
self.num_heads = num_heads
|
497 |
+
self.num_hidden_layers = num_hidden_layers
|
498 |
+
self.dropout = dropout
|
499 |
+
self.head_dim = pred_hid_size // (num_heads * 4)
|
500 |
+
self.rope_theta = config.rope_theta
|
501 |
+
self.dDash = dDash
|
502 |
+
self.intermediate_dim = intdim
|
503 |
+
self.attn_reduce_factor = attn_reduce_factor
|
504 |
+
self.max_position_embeddings = config.max_position_embeddings
|
505 |
+
self.flash_attn = False
|
506 |
+
|
507 |
+
# Reduce the hidden size for attention computations
|
508 |
+
self.hidden_size_reduced = self.hidden_size // self.attn_reduce_factor # For example, reduce to 1/4th
|
509 |
+
assert self.hidden_size_reduced % self.num_heads == 0, "Reduced hidden size must be divisible by num_heads"
|
510 |
+
self.attn_head_dim = self.hidden_size_reduced // self.num_heads
|
511 |
+
|
512 |
+
# Input projection to reduce hidden size
|
513 |
+
self.input_proj = nn.Linear(self.hidden_size, self.hidden_size_reduced, bias=False)
|
514 |
+
|
515 |
+
# Query, Key, Value projections for attention
|
516 |
+
self.q_proj_attn = nn.Linear(self.hidden_size_reduced, self.hidden_size_reduced, bias=False)
|
517 |
+
self.k_proj_attn = nn.Linear(self.hidden_size_reduced, self.hidden_size_reduced, bias=False)
|
518 |
+
self.v_proj_attn = nn.Linear(self.hidden_size_reduced, self.hidden_size_reduced, bias=False)
|
519 |
+
# Output projection to restore hidden size
|
520 |
+
# self.o_proj_attn = nn.Linear(self.hidden_size_reduced, self.hidden_size_reduced, bias=False)
|
521 |
+
self.attn_dropout = nn.Dropout(self.dropout)
|
522 |
+
|
523 |
+
# LayerNorm and Feed-forward network
|
524 |
+
self.norm1 = nn.LayerNorm(self.hidden_size_reduced)
|
525 |
+
self.norm2 = nn.LayerNorm(self.hidden_size)
|
526 |
+
|
527 |
+
self.ffn_hidden_size = 4 * self.hidden_size_reduced # Typical FFN hidden size
|
528 |
+
self.ffn = nn.Sequential(
|
529 |
+
nn.Linear(self.hidden_size_reduced, self.ffn_hidden_size),
|
530 |
+
nn.GELU(),
|
531 |
+
nn.Linear(self.ffn_hidden_size, self.num_heads * self.num_hidden_layers),
|
532 |
+
)
|
533 |
+
|
534 |
+
# Initialize rotary positional embeddings
|
535 |
+
self._init_rope()
|
536 |
+
self._initialize_weights()
|
537 |
+
self.device = None
|
538 |
+
|
539 |
+
def _initialize_weights(self):
|
540 |
+
for name, module in self.named_modules():
|
541 |
+
if isinstance(module, nn.Linear):
|
542 |
+
nn.init.xavier_uniform_(module.weight) # Xavier initialization for linear layers
|
543 |
+
if module.bias is not None:
|
544 |
+
nn.init.constant_(module.bias, 0)
|
545 |
+
elif isinstance(module, nn.LayerNorm):
|
546 |
+
nn.init.constant_(module.weight, 1.0)
|
547 |
+
nn.init.constant_(module.bias, 0.0)
|
548 |
+
elif isinstance(module, nn.MultiheadAttention):
|
549 |
+
# Initialize in_proj_weight
|
550 |
+
nn.init.xavier_uniform_(module.in_proj_weight)
|
551 |
+
if module.in_proj_bias is not None:
|
552 |
+
nn.init.constant_(module.in_proj_bias, 0)
|
553 |
+
|
554 |
+
# Initialize out_proj
|
555 |
+
nn.init.xavier_uniform_(module.out_proj.weight)
|
556 |
+
if module.out_proj.bias is not None:
|
557 |
+
nn.init.constant_(module.out_proj.bias, 0)
|
558 |
+
|
559 |
+
def _init_rope(self):
|
560 |
+
config_copy = copy.deepcopy(self.config)
|
561 |
+
config_copy.head_dim = self.attn_head_dim
|
562 |
+
# Rotary embedding for attention layer
|
563 |
+
self.rotary_emb_attn = LlamaRotaryEmbedding(
|
564 |
+
config_copy
|
565 |
+
)
|
566 |
+
# Rotary embedding for importance projection
|
567 |
+
self.rotary_emb_importance = LlamaRotaryEmbedding(
|
568 |
+
config_copy
|
569 |
+
)
|
570 |
+
|
571 |
+
def forward(self, hidden_states, attention_mask=None, position_ids=None, past_key_value=None, use_cache=False):
|
572 |
+
"""
|
573 |
+
Forward pass for the Optimized Token Importance Predictor.
|
574 |
+
|
575 |
+
Args:
|
576 |
+
hidden_states (torch.Tensor): Input tensor of shape [B, L, HQ].
|
577 |
+
attention_mask (torch.Tensor, optional): Attention mask of shape [B, 1, 1, L] or [B, 1, L, L].
|
578 |
+
position_ids (torch.Tensor, optional): Position IDs.
|
579 |
+
past_key_value (tuple, optional): Past key and value states.
|
580 |
+
use_cache (bool, optional): Whether to use cache.
|
581 |
+
|
582 |
+
Returns:
|
583 |
+
torch.Tensor: Importance scores of shape [B, N, H, L, L].
|
584 |
+
"""
|
585 |
+
# Set device if not already set
|
586 |
+
if self.device != hidden_states.device:
|
587 |
+
self.device = hidden_states.device
|
588 |
+
self.to(self.device)
|
589 |
+
|
590 |
+
B, L, E = hidden_states.size()
|
591 |
+
if past_key_value is None:
|
592 |
+
past_key_value = {}
|
593 |
+
# if L == 1:
|
594 |
+
# import pdb; pdb.set_trace()
|
595 |
+
past_primary = past_key_value.get('primary', None)
|
596 |
+
# Reduce hidden size
|
597 |
+
hidden_states = hidden_states.to(self.input_proj.weight.dtype)
|
598 |
+
hidden_states_reduced = self.input_proj(hidden_states) # [B, L, hidden_size_reduced]
|
599 |
+
# Compute q, k, v for attention
|
600 |
+
q = self.q_proj_attn(hidden_states_reduced) # [B, L, hidden_size_reduced]
|
601 |
+
k = self.k_proj_attn(hidden_states_reduced) # [B, L, hidden_size_reduced]
|
602 |
+
v = self.v_proj_attn(hidden_states_reduced) # [B, L, hidden_size_reduced]
|
603 |
+
# Reshape q, k, v to [B, num_heads, L, attn_head_dim]
|
604 |
+
q = q.view(B, L, self.num_heads, self.attn_head_dim).transpose(1, 2) # [B, num_heads, L, attn_head_dim]
|
605 |
+
k = k.view(B, L, self.num_heads, self.attn_head_dim).transpose(1, 2) # [B, num_heads, L, attn_head_dim]
|
606 |
+
v = v.view(B, L, self.num_heads, self.attn_head_dim).transpose(1, 2) # [B, num_heads, L, attn_head_dim]
|
607 |
+
# Compute kv_seq_len before concatenation
|
608 |
+
if past_primary is not None:
|
609 |
+
past_L = past_primary[0].shape[2]
|
610 |
+
kv_seq_len = past_L + L
|
611 |
+
else:
|
612 |
+
kv_seq_len = L
|
613 |
+
|
614 |
+
# Apply rotary positional embeddings based on kv_seq_len
|
615 |
+
cos, sin = self.rotary_emb_attn(v, position_ids)
|
616 |
+
if position_ids is None:
|
617 |
+
position_ids = torch.arange(kv_seq_len, dtype=torch.long, device=self.device)
|
618 |
+
position_ids = position_ids.unsqueeze(0).expand(B, kv_seq_len)
|
619 |
+
|
620 |
+
if past_primary is not None:
|
621 |
+
# Concatenate past k and v
|
622 |
+
k = torch.cat([past_primary[0], k], dim=2) # [B, num_heads, past_L + L, attn_head_dim]
|
623 |
+
v = torch.cat([past_primary[1], v], dim=2) # [B, num_heads, past_L + L, attn_head_dim]
|
624 |
+
|
625 |
+
# Apply rotary embeddings after concatenation
|
626 |
+
q, k = apply_rotary_pos_emb(q, k, cos, sin, position_ids)
|
627 |
+
|
628 |
+
# Update cache if use_cache is True
|
629 |
+
if use_cache:
|
630 |
+
past_key_value['primary'] = (k.detach(), v.detach())
|
631 |
+
|
632 |
+
# if self.flash_attn:
|
633 |
+
# sm_scale = 1.0 / math.sqrt(self.attn_head_dim)
|
634 |
+
# attn_output = attention(q.contiguous().to(torch.float16), k.contiguous().to(torch.float16), v.contiguous().to(torch.float16), True, sm_scale).to(q.dtype)
|
635 |
+
# else:
|
636 |
+
# attn_output = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, is_causal=True)
|
637 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, is_causal=True)
|
638 |
+
attn_output = attn_output.to(q.dtype)
|
639 |
+
attn_output = attn_output.transpose(1, 2).contiguous().view(B, L, self.hidden_size_reduced)
|
640 |
+
attn_output = self.norm1(attn_output)
|
641 |
+
head_importances = self.ffn(attn_output)
|
642 |
+
return head_importances, past_key_value
|
643 |
+
|
644 |
+
def calculate_hit_metrics(estimated_importance: torch.Tensor,
|
645 |
+
true_importance: torch.Tensor,
|
646 |
+
top_k_ratio: float = 0.5) -> Tuple[float, float, float]:
|
647 |
+
"""
|
648 |
+
Calculate hit accuracy, mean, and max rank correlation between estimated and true importance tensors.
|
649 |
+
We compute metrics along the last dimension of the input tensors.
|
650 |
+
|
651 |
+
Shapes:
|
652 |
+
- 4D token-importance: [B, H, L, L]. We slice the last query (index -1) => [B, H, L].
|
653 |
+
- 3D head-importance: [B, L, H]. We use all of it as-is => [B, L, H].
|
654 |
+
|
655 |
+
Args:
|
656 |
+
estimated_importance (torch.Tensor): [B, H, L, L] or [B, L, H]
|
657 |
+
true_importance (torch.Tensor): [B, H, L, L] or [B, L, H]
|
658 |
+
top_k_ratio (float): Fraction of top-k elements to consider for hit accuracy (default=0.5).
|
659 |
+
|
660 |
+
Returns:
|
661 |
+
(hit_accuracy, mean_corr, max_corr):
|
662 |
+
hit_accuracy (float): Intersection ratio of top-k sets (0..1).
|
663 |
+
mean_corr (float): Average Spearman rank correlation over all [B, ...].
|
664 |
+
max_corr (float): Maximum Spearman rank correlation among all [B, ...].
|
665 |
+
"""
|
666 |
+
|
667 |
+
# 1) Standardize shapes so the last dimension is what we rank over.
|
668 |
+
if estimated_importance.dim() == 4:
|
669 |
+
# Shape is [B, H, L, L] => slice to keep only the last query => [B, H, L]
|
670 |
+
estimated_importance = estimated_importance[:, :, -1, :]
|
671 |
+
true_importance = true_importance[:, :, -1, :]
|
672 |
+
# after slicing: [B, H, L]
|
673 |
+
# For intersection denominator => top_k * B * H
|
674 |
+
denom_for_hits = estimated_importance.size(0) * estimated_importance.size(1)
|
675 |
+
elif estimated_importance.dim() == 3:
|
676 |
+
# Shape is [B, L, H], the last dimension is H
|
677 |
+
# For intersection denominator => top_k * B * L
|
678 |
+
denom_for_hits = estimated_importance.size(0) * estimated_importance.size(1)
|
679 |
+
else:
|
680 |
+
raise ValueError("Tensors must be either 4D [B,H,L,L] or 3D [B,L,H].")
|
681 |
+
|
682 |
+
# 2) Compute Spearman rank correlation along the last dimension.
|
683 |
+
# Sort indices in descending order => get 'ranks' for correlation.
|
684 |
+
_, sorted_esti = torch.sort(estimated_importance, dim=-1, descending=True)
|
685 |
+
_, sorted_true = torch.sort(true_importance, dim=-1, descending=True)
|
686 |
+
|
687 |
+
# Spearman's rho = 1 - 6 * sum(d^2) / [n*(n^2 - 1)]
|
688 |
+
n = sorted_esti.shape[-1]
|
689 |
+
d = sorted_esti.float() - sorted_true.float()
|
690 |
+
d_squared = d ** 2
|
691 |
+
sum_d_squared = d_squared.sum(dim=-1)
|
692 |
+
rank_corr = 1 - (6 * sum_d_squared) / (n * (n**2 - 1)) # shape: [B,H] or [B,L]
|
693 |
+
|
694 |
+
mean_corr = rank_corr.mean().item()
|
695 |
+
max_corr = rank_corr.max().item()
|
696 |
+
|
697 |
+
# 3) Compute top-k hit accuracy along the last dimension.
|
698 |
+
top_k = max(1, int(n * top_k_ratio))
|
699 |
+
_, top_esti_indices = torch.topk(estimated_importance, top_k, dim=-1)
|
700 |
+
_, top_true_indices = torch.topk(true_importance, top_k, dim=-1)
|
701 |
+
|
702 |
+
# top_esti_indices => [B,H,top_k] or [B,L,top_k]
|
703 |
+
# top_true_indices => [B,H,top_k] or [B,L,top_k]
|
704 |
+
# matches => [B,H,top_k,top_k] or [B,L,top_k,top_k]
|
705 |
+
matches = (top_esti_indices.unsqueeze(-1) == top_true_indices.unsqueeze(-2))
|
706 |
+
intersection = matches.any(dim=-1).sum(dim=-1) # => [B,H] or [B,L]
|
707 |
+
|
708 |
+
# Each [B,H] or [B,L] element can have at most 'top_k' matches, so total is top_k * denom_for_hits.
|
709 |
+
total_possible = top_k * denom_for_hits
|
710 |
+
hit_accuracy = intersection.sum().item() / total_possible # => 0..1
|
711 |
+
|
712 |
+
return hit_accuracy, mean_corr, max_corr
|
713 |
+
|
714 |
+
|
715 |
+
def threshold_to_mask(unadj_importance_mask, perhead_thresholds, min_sparse_index, bsz, q_len, key_len):
|
716 |
+
"""
|
717 |
+
Create a mask tensor based on per-head thresholds, setting values below the threshold to -inf.
|
718 |
+
|
719 |
+
Args:
|
720 |
+
- unadj_importance_mask: torch.Tensor of shape [B, H, Lq, Lk].
|
721 |
+
- perhead_thresholds: torch.Tensor of shape [H], per-head thresholds.
|
722 |
+
- min_sparse_index: Minimum index for sparsity; values below this index will not be masked.
|
723 |
+
- bsz: Batch size.
|
724 |
+
- q_len: Query length (Lq).
|
725 |
+
- key_len: Key length (Lk).
|
726 |
+
|
727 |
+
Returns:
|
728 |
+
- mask_tensor: torch.Tensor of shape [B, H, Lq, Lk], with values below threshold as -inf.
|
729 |
+
"""
|
730 |
+
# Ensure perhead_thresholds is in the correct shape for broadcasting
|
731 |
+
thresholds_broadcast = perhead_thresholds.view(1, -1, 1, 1) # [1, H, 1, 1]
|
732 |
+
|
733 |
+
# Compare unadj_importance_mask with thresholds to create a mask
|
734 |
+
mask_tensor = torch.where(
|
735 |
+
unadj_importance_mask >= thresholds_broadcast,
|
736 |
+
torch.zeros_like(unadj_importance_mask),
|
737 |
+
torch.full_like(unadj_importance_mask, float('-inf'))
|
738 |
+
) # [B, H, Lq, Lk]
|
739 |
+
|
740 |
+
# Ensure mask_tensor has mask_tensor[:, :, :, :min_sparse_index] = 0
|
741 |
+
mask_tensor[:, :, :, :min_sparse_index] = 0.0
|
742 |
+
|
743 |
+
return mask_tensor
|
744 |
+
|
745 |
+
class SlidingWindowCache:
|
746 |
+
def __init__(self, max_seq_len, sliding_window, device):
|
747 |
+
self.sliding_window = sliding_window
|
748 |
+
self.device = device
|
749 |
+
if sliding_window is None:
|
750 |
+
self.max_seq_len = 0
|
751 |
+
self.window = None
|
752 |
+
else:
|
753 |
+
self.max_seq_len = max_seq_len
|
754 |
+
self.window = self._create_window(self.max_seq_len)
|
755 |
+
|
756 |
+
def _create_window(self, seq_len):
|
757 |
+
idx = torch.arange(seq_len, device=self.device)
|
758 |
+
query = idx.unsqueeze(1) # [seq_len, 1]
|
759 |
+
key = idx.unsqueeze(0) # [1, seq_len]
|
760 |
+
win = (key >= (query - self.sliding_window + 1)) & (key <= query)
|
761 |
+
return win.unsqueeze(0).unsqueeze(0) # [1,1,seq_len,seq_len]
|
762 |
+
|
763 |
+
def get_window(self, q_len, key_len):
|
764 |
+
if self.sliding_window is None:
|
765 |
+
return None
|
766 |
+
req = max(q_len, key_len)
|
767 |
+
if req > self.max_seq_len:
|
768 |
+
self.max_seq_len = req
|
769 |
+
self.window = self._create_window(self.max_seq_len)
|
770 |
+
return self.window[:, :, :q_len, :key_len]
|
771 |
+
|
772 |
+
def enforce_sliding_window(mask_tensor, window):
|
773 |
+
if window is None:
|
774 |
+
return mask_tensor
|
775 |
+
return mask_tensor.masked_fill(window, 0.0)
|
776 |
+
|
777 |
+
|
778 |
+
def sorted_index_to_mask(
|
779 |
+
sorted_indices,
|
780 |
+
attention_mask,
|
781 |
+
min_sparse_index,
|
782 |
+
bsz,
|
783 |
+
q_len,
|
784 |
+
key_len,
|
785 |
+
sparse_aggression,
|
786 |
+
sliding_window=None
|
787 |
+
):
|
788 |
+
"""
|
789 |
+
sorted_indices: [B, H, q_len, key_len]
|
790 |
+
attention_mask: [1, 1, q_len, key_len] (True = keep, False = mask out, or vice versa)
|
791 |
+
min_sparse_index: guaranteed front region to keep
|
792 |
+
sliding_window: guaranteed trailing region (for each query) to keep
|
793 |
+
sparse_aggression: float in [0,1], fraction of keys to drop or keep
|
794 |
+
"""
|
795 |
+
device = sorted_indices.device
|
796 |
+
dtype = sorted_indices.dtype
|
797 |
+
|
798 |
+
# Step 1: Compute base K
|
799 |
+
if q_len == 1:
|
800 |
+
query_positions = torch.arange(q_len, device=device).view(1, 1, q_len, 1).float()
|
801 |
+
query_positions[0] = key_len + 1
|
802 |
+
else:
|
803 |
+
query_positions = torch.arange(q_len, device=device).view(1, 1, q_len, 1).float() + 1.0
|
804 |
+
K_original = torch.ceil(query_positions * sparse_aggression).long() # [1,1,q_len,1]
|
805 |
+
K_original = torch.clamp(K_original, max=key_len)
|
806 |
+
|
807 |
+
# Step 1b: Incorporate guaranteed region
|
808 |
+
guaranteed = min_sparse_index
|
809 |
+
if sliding_window is not None:
|
810 |
+
guaranteed += sliding_window
|
811 |
+
# Subtract guaranteed from the original K
|
812 |
+
K_adjusted = K_original - guaranteed
|
813 |
+
# Ensure K_adjusted is at least 0
|
814 |
+
K_adjusted = torch.clamp(K_adjusted, min=0, max=key_len)
|
815 |
+
|
816 |
+
# Step 2: Expand attention_mask to [B,H,q_len,key_len]
|
817 |
+
attention_mask_expanded = attention_mask.expand(bsz, -1, -1, -1)
|
818 |
+
attention_mask_expanded = attention_mask_expanded.expand(-1, sorted_indices.size(1), -1, -1)
|
819 |
+
# Convert True -> 1, False -> 0
|
820 |
+
attention_mask_expanded = (~attention_mask_expanded.bool()).int()
|
821 |
+
|
822 |
+
# Step 3: Gather (reorder) mask by sorted_indices
|
823 |
+
gathered_mask = torch.gather(attention_mask_expanded, dim=-1, index=sorted_indices)
|
824 |
+
|
825 |
+
# Step 4: cumsum along sorted dimension
|
826 |
+
gathered_mask_float = gathered_mask.float()
|
827 |
+
cum_sum = torch.cumsum(gathered_mask_float, dim=-1) # [B,H,q_len,key_len]
|
828 |
+
|
829 |
+
# Step 5: Compare cumsum <= K_adjusted
|
830 |
+
# Expand K_adjusted to [B,H,q_len,key_len] for broadcast
|
831 |
+
K_broadcast = K_adjusted.view(1, 1, q_len, 1).expand_as(cum_sum)
|
832 |
+
selected_mask = (cum_sum <= K_broadcast)
|
833 |
+
|
834 |
+
# Step 6: Prepare final mask_tensor with -inf by default
|
835 |
+
mask_tensor = torch.full_like(attention_mask_expanded.float(), float('-inf'))
|
836 |
+
|
837 |
+
# Step 7: Scatter 0 where selected, -inf otherwise
|
838 |
+
scatter_values = torch.zeros_like(gathered_mask_float)
|
839 |
+
scatter_values = scatter_values.masked_fill(~selected_mask, float('-inf'))
|
840 |
+
mask_tensor.scatter_(-1, sorted_indices, scatter_values)
|
841 |
+
|
842 |
+
# Step 8: Force the guaranteed front region unmasked
|
843 |
+
mask_tensor[:, :, :, :min_sparse_index] = 0.0
|
844 |
+
|
845 |
+
# We do NOT forcibly unmask the trailing `sliding_window` here,
|
846 |
+
# because we typically do it with a separate function that
|
847 |
+
# ensures the last `sliding_window` positions are unmasked for each query.
|
848 |
+
# Replace with self.sliding_window where referenced
|
849 |
+
# Where not referenced, reduce budget in calculation.
|
850 |
+
|
851 |
+
return mask_tensor
|
852 |
+
|
853 |
+
class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
854 |
+
"""LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
855 |
+
|
856 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0, config=None):
|
857 |
+
self.scaling_factor = scaling_factor
|
858 |
+
super().__init__(config)
|
859 |
+
|
860 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
861 |
+
self.max_seq_len_cached = seq_len
|
862 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
863 |
+
t = t / self.scaling_factor
|
864 |
+
|
865 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
866 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
867 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
868 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
869 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
870 |
+
|
871 |
+
|
872 |
+
class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
873 |
+
"""LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
874 |
+
|
875 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0, config=None):
|
876 |
+
self.scaling_factor = scaling_factor
|
877 |
+
super().__init__(config)
|
878 |
+
|
879 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
880 |
+
self.max_seq_len_cached = seq_len
|
881 |
+
|
882 |
+
if seq_len > self.max_position_embeddings:
|
883 |
+
base = self.base * (
|
884 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
885 |
+
) ** (self.dim / (self.dim - 2))
|
886 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
887 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
888 |
+
|
889 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
890 |
+
|
891 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
892 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
893 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
894 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
895 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
896 |
+
|
897 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
898 |
+
"""
|
899 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
900 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
901 |
+
"""
|
902 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
903 |
+
if n_rep == 1:
|
904 |
+
return hidden_states
|
905 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
906 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
907 |
+
|
908 |
+
|
909 |
+
class LlamaAttentionExperimental(nn.Module):
|
910 |
+
def __init__(self, config: LlamaConfig, producer=None, layer_idx=0):
|
911 |
+
super().__init__()
|
912 |
+
self.config = config
|
913 |
+
self.hidden_size = config.hidden_size
|
914 |
+
self.num_hidden_layers = config.num_hidden_layers
|
915 |
+
self.num_heads = config.num_attention_heads
|
916 |
+
self.head_dim = self.hidden_size // self.num_heads
|
917 |
+
self.num_key_value_heads = config.num_key_value_heads
|
918 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
919 |
+
self.max_position_embeddings = config.max_position_embeddings
|
920 |
+
self.rope_theta = config.rope_theta
|
921 |
+
self.inference_mode = False
|
922 |
+
self.producer = producer
|
923 |
+
self.layer_idx = layer_idx
|
924 |
+
self.token_sparse_method = None
|
925 |
+
self.sparse_aggression = None
|
926 |
+
self.stream_llm_start_size = None
|
927 |
+
self.dDash = None
|
928 |
+
self.intdim = None
|
929 |
+
self.attn_reduce_factor = None
|
930 |
+
self.head_attn_reduce_factor = None
|
931 |
+
self.effective_sparsity = None
|
932 |
+
self.min_sparse_index = None
|
933 |
+
self.pred_hid_size = self.hidden_size
|
934 |
+
self.num_tok_per_page = None
|
935 |
+
self.calc_hitrates = False
|
936 |
+
self.flash_attn = False
|
937 |
+
self.train_headpredictor = False
|
938 |
+
self.calibrate_thresholds = False
|
939 |
+
self.test_with_thresholds = False
|
940 |
+
self.old_predictor = None
|
941 |
+
|
942 |
+
if self.layer_idx > 0:
|
943 |
+
self.mseloss = MSELoss(reduction='none')
|
944 |
+
self.msemagn_loss = None
|
945 |
+
self.headmseloss = MSELoss(reduction='none')
|
946 |
+
self.headmsemagn_loss = None
|
947 |
+
|
948 |
+
if self.producer is None: # This is the producer layer
|
949 |
+
self.q_importance = None # Shared mask across layers during inference
|
950 |
+
self.k_importance = None
|
951 |
+
self.head_importances = None
|
952 |
+
self.actmagn_masklist = {}
|
953 |
+
self.available_tokens = {}
|
954 |
+
|
955 |
+
# Attention setup
|
956 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
|
957 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
958 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
959 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
|
960 |
+
self._init_rope()
|
961 |
+
|
962 |
+
def update_predictor(self):
|
963 |
+
self.sparse_token_predictor = TokenImportancePredictorAttentive(
|
964 |
+
self.config, self.pred_hid_size, self.num_heads, self.num_layers_pred, dropout=0.1, dDash = self.dDash, \
|
965 |
+
intdim = self.intdim, attn_reduce_factor=self.attn_reduce_factor
|
966 |
+
).to('cuda:0')
|
967 |
+
self.sparse_token_predictor.flash_attn = self.flash_attn
|
968 |
+
if self.train_headpredictor:
|
969 |
+
self.sparse_head_predictor = HeadImportancePredictor(
|
970 |
+
self.config, self.pred_hid_size, self.num_heads, self.num_layers_pred, dropout=0.1, dDash = self.dDash, \
|
971 |
+
intdim = self.intdim, attn_reduce_factor=self.head_attn_reduce_factor
|
972 |
+
).to('cuda:0')
|
973 |
+
self.sparse_head_predictor.flash_attn = self.flash_attn
|
974 |
+
|
975 |
+
def set_token_sparsity(self):
|
976 |
+
assert self.token_sparse_method is not None, "Set token sparse method first!"
|
977 |
+
if self.token_sparse_method is not None:
|
978 |
+
try:
|
979 |
+
mname = self.config._name_or_path.split("/")[-1]
|
980 |
+
read_path = f"threshold_calibs/{mname}/{self.token_sparse_method}.pkl"
|
981 |
+
threshold_model_dictionary = torch.load(read_path)
|
982 |
+
self.tok_calibration_set = threshold_model_dictionary
|
983 |
+
except:
|
984 |
+
pass
|
985 |
+
if self.token_sparse_method == "LazyLLM":
|
986 |
+
if self.layer_idx <= 9:
|
987 |
+
self.sparse_aggression = 1
|
988 |
+
elif self.layer_idx <= 19:
|
989 |
+
self.sparse_aggression = 0.7
|
990 |
+
elif self.layer_idx <= 28:
|
991 |
+
self.sparse_aggression = 0.4
|
992 |
+
else:
|
993 |
+
self.sparse_aggression = 0.1
|
994 |
+
elif "fixed" in self.token_sparse_method:
|
995 |
+
if self.layer_idx == 0:
|
996 |
+
self.sparse_aggression = 1
|
997 |
+
else:
|
998 |
+
self.sparse_aggression = 1 - float(self.token_sparse_method.split("_")[1].split("pc")[0])/100.
|
999 |
+
elif "progressive" in self.token_sparse_method:
|
1000 |
+
pc_drop = float(self.token_sparse_method.split("_")[1].split("pc")[0])/100.
|
1001 |
+
self.sparse_aggression = (1 - pc_drop) ** (self.layer_idx) # (x% per layer, progressive_xpc style)
|
1002 |
+
else:
|
1003 |
+
raise ValueError(f"Unknown token sparsity method {self.token_sparse_method}")
|
1004 |
+
|
1005 |
+
|
1006 |
+
def _init_rope(self):
|
1007 |
+
if self.config.rope_scaling is None:
|
1008 |
+
self.rotary_emb = LlamaRotaryEmbedding(
|
1009 |
+
self.config
|
1010 |
+
)
|
1011 |
+
else:
|
1012 |
+
scaling_type = self.config.rope_scaling.get("type") or self.config.rope_scaling.get("rope_type")
|
1013 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
1014 |
+
if scaling_type == "linear" or scaling_type == 'llama3':
|
1015 |
+
self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
|
1016 |
+
self.head_dim,
|
1017 |
+
max_position_embeddings=self.max_position_embeddings,
|
1018 |
+
scaling_factor=scaling_factor,
|
1019 |
+
base=self.rope_theta,
|
1020 |
+
config=self.config
|
1021 |
+
)
|
1022 |
+
elif scaling_type == "dynamic":
|
1023 |
+
self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
|
1024 |
+
self.head_dim,
|
1025 |
+
max_position_embeddings=self.max_position_embeddings,
|
1026 |
+
scaling_factor=scaling_factor,
|
1027 |
+
base=self.rope_theta,
|
1028 |
+
config=self.config
|
1029 |
+
)
|
1030 |
+
else:
|
1031 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
1032 |
+
|
1033 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
1034 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
1035 |
+
|
1036 |
+
def forward(
|
1037 |
+
self,
|
1038 |
+
hidden_states: torch.Tensor,
|
1039 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1040 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1041 |
+
past_key_value: Optional[Union[DynamicCache, PredictorDynamicCache]] = None,
|
1042 |
+
output_attentions: bool = False,
|
1043 |
+
use_cache: bool = False,
|
1044 |
+
padding_mask: Optional[torch.LongTensor] = None,
|
1045 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1046 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
1047 |
+
**kwargs,
|
1048 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[PredictorDynamicCache]]:
|
1049 |
+
bsz, q_len, _ = hidden_states.size()
|
1050 |
+
Ltrack = hidden_states.size(1)
|
1051 |
+
|
1052 |
+
if self.config.pretraining_tp > 1:
|
1053 |
+
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
|
1054 |
+
query_slices = self.q_proj.weight.split(
|
1055 |
+
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
|
1056 |
+
)
|
1057 |
+
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
1058 |
+
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
1059 |
+
|
1060 |
+
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
|
1061 |
+
query_states = torch.cat(query_states, dim=-1)
|
1062 |
+
|
1063 |
+
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
|
1064 |
+
key_states = torch.cat(key_states, dim=-1)
|
1065 |
+
|
1066 |
+
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
|
1067 |
+
value_states = torch.cat(value_states, dim=-1)
|
1068 |
+
else:
|
1069 |
+
query_states = self.q_proj(hidden_states)
|
1070 |
+
key_states = self.k_proj(hidden_states)
|
1071 |
+
value_states = self.v_proj(hidden_states)
|
1072 |
+
|
1073 |
+
evalmode = self.eval_llm_mode
|
1074 |
+
num_tokens_to_keep = int(q_len * self.sparse_aggression)
|
1075 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
1076 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
1077 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
1078 |
+
|
1079 |
+
# cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) # AHMED: Modified this to use the newer version.
|
1080 |
+
cos, sin = position_embeddings
|
1081 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
1082 |
+
|
1083 |
+
if use_cache:
|
1084 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx)
|
1085 |
+
|
1086 |
+
kv_seq_len = key_states.shape[-2]
|
1087 |
+
final_mask = None
|
1088 |
+
|
1089 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
1090 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
1091 |
+
|
1092 |
+
key_len = key_states.size(2)
|
1093 |
+
bsz, q_len = query_states.size(0), query_states.size(2)
|
1094 |
+
|
1095 |
+
if attention_mask is None:
|
1096 |
+
# We want a [q_len, kv_seq_len] boolean upper-triangular mask
|
1097 |
+
causal_mask_2d = torch.ones(q_len, kv_seq_len,
|
1098 |
+
device=hidden_states.device,
|
1099 |
+
dtype=torch.bool).triu(diagonal=1)
|
1100 |
+
# Then shape it to [bsz, 1, q_len, kv_seq_len]
|
1101 |
+
causal_mask_4d = causal_mask_2d.unsqueeze(0).expand(bsz, 1, q_len, kv_seq_len)
|
1102 |
+
# Now fill -inf where the mask is True
|
1103 |
+
attention_mask = torch.full_like(causal_mask_4d, 0, dtype=hidden_states.dtype)
|
1104 |
+
if q_len != 1:
|
1105 |
+
attention_mask = attention_mask.masked_fill(causal_mask_4d, float("-inf"))
|
1106 |
+
|
1107 |
+
if self.inference_mode:
|
1108 |
+
min_sparse_index = self.min_sparse_index
|
1109 |
+
with torch.no_grad():
|
1110 |
+
if evalmode == "ExpPred":
|
1111 |
+
if self.layer_idx > 0:
|
1112 |
+
q_importance_tensor = self.producer.q_importance[:, self.layer_idx % self.producer_frequency, :, :].float().to(query_states.device) # [BH, Lq, D']
|
1113 |
+
k_importance_tensor = self.producer.k_importance[:, self.layer_idx % self.producer_frequency, :, :].float().to(key_states.device) # [BH, Lk, D']
|
1114 |
+
importance_mask = torch.bmm(q_importance_tensor, k_importance_tensor.transpose(-2, -1)) / math.sqrt(self.dDash) # [BH, Lq, Lk]
|
1115 |
+
importance_mask = importance_mask.view(bsz, self.num_heads, q_len, key_len) # [B, H, Lq, Lk]
|
1116 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(-2, -1)) / math.sqrt(self.head_dim)
|
1117 |
+
if self.calc_hitrates:
|
1118 |
+
self.tok_hit_acc, self.tok_mean_rank_corr, self.tok_max_rank_corr = calculate_hit_metrics(
|
1119 |
+
estimated_importance=importance_mask,
|
1120 |
+
true_importance=attn_weights,
|
1121 |
+
top_k_ratio=0.5
|
1122 |
+
)
|
1123 |
+
if self.calibrate_thresholds:
|
1124 |
+
### Threshold variance investigation
|
1125 |
+
unadj_importance_mask = importance_mask.clone()
|
1126 |
+
importance_mask = torch.softmax(importance_mask + attention_mask, dim=-1)
|
1127 |
+
sorted_indices = torch.argsort(importance_mask, dim=-1, descending=True)
|
1128 |
+
sorted_indices = sorted_indices[:, :, -q_len:, :]
|
1129 |
+
sorted_values, sorted_ix = torch.sort(importance_mask, dim=-1)
|
1130 |
+
sorted_true_values, _ = torch.sort(torch.gather(unadj_importance_mask, dim=-1, index=sorted_ix), dim=-1)
|
1131 |
+
true_thresholds = sorted_true_values[:, :, :, int(importance_mask.size(-1) * self.sparse_aggression)]
|
1132 |
+
thresholds = sorted_values[:, :, :, int(importance_mask.size(-1) * self.sparse_aggression)]
|
1133 |
+
self.true_threshmean = true_thresholds
|
1134 |
+
self.threshmean = thresholds
|
1135 |
+
if self.test_with_thresholds:
|
1136 |
+
unadj_importance_mask = importance_mask.clone()
|
1137 |
+
perhead_thresholds = self.tok_calibration_set[self.layer_idx - 1].to(unadj_importance_mask.device) # 0 does not have calibration data.
|
1138 |
+
mask_tensor = threshold_to_mask(unadj_importance_mask, perhead_thresholds, min_sparse_index, bsz, q_len, key_len)
|
1139 |
+
else:
|
1140 |
+
importance_mask = torch.softmax(importance_mask + attention_mask, dim=-1)
|
1141 |
+
sorted_indices = torch.argsort(importance_mask, dim=-1, descending=True)
|
1142 |
+
sorted_indices = sorted_indices[:, :, -q_len:, :]
|
1143 |
+
mask_tensor = sorted_index_to_mask(sorted_indices, attention_mask, min_sparse_index, bsz, q_len, key_len, self.sparse_aggression, self.sliding_window)
|
1144 |
+
### Threshold variance investigation
|
1145 |
+
if self.sliding_window is not None:
|
1146 |
+
if not hasattr(self, "window_cache"):
|
1147 |
+
self.window_cache = SlidingWindowCache(max_seq_len=1024,
|
1148 |
+
sliding_window=self.sliding_window,
|
1149 |
+
device=mask_tensor.device)
|
1150 |
+
window = self.window_cache.get_window(q_len, key_len)
|
1151 |
+
mask_tensor = enforce_sliding_window(mask_tensor, window)
|
1152 |
+
final_mask = mask_tensor
|
1153 |
+
|
1154 |
+
self.final_mask_investigate = final_mask
|
1155 |
+
attn_weights = attn_weights + mask_tensor + attention_mask
|
1156 |
+
else:
|
1157 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(-2, -1)) / math.sqrt(self.head_dim)
|
1158 |
+
attn_weights = attn_weights + attention_mask
|
1159 |
+
else:
|
1160 |
+
raise ValueError(f"Unknown eval mode {evalmode}")
|
1161 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype)
|
1162 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
1163 |
+
|
1164 |
+
else:
|
1165 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(-2, -1)) / math.sqrt(self.head_dim)
|
1166 |
+
if self.layer_idx > 0:
|
1167 |
+
q_importance_tensor = self.producer.q_importance[:, self.layer_idx % self.producer_frequency, :, :].float().to(query_states.device) # [BH, Lq, D']
|
1168 |
+
k_importance_tensor = self.producer.k_importance[:, self.layer_idx % self.producer_frequency, :, :].float().to(key_states.device) # [BH, Lk, D']
|
1169 |
+
importance_mask = torch.bmm(q_importance_tensor, k_importance_tensor.transpose(-2, -1)) / math.sqrt(self.dDash) # [BH, Lq, Lk]
|
1170 |
+
importance_mask = importance_mask.view(bsz, self.num_heads, q_len, key_len) # [B, H, Lq, Lk]
|
1171 |
+
|
1172 |
+
if self.lookahead == 0:
|
1173 |
+
self.msemagn_loss = self.mseloss(attn_weights, importance_mask)
|
1174 |
+
else:
|
1175 |
+
self.msemagn_loss = self.mseloss(attn_weights[:, :, self.lookahead:, :], importance_mask[:, :, :-self.lookahead, :])
|
1176 |
+
self.msemagn_loss = (self.msemagn_loss).mean(dim=(-1, -2))
|
1177 |
+
self.msemagn_loss = self.msemagn_loss.mean()
|
1178 |
+
|
1179 |
+
if self.calc_hitrates:
|
1180 |
+
self.tok_hit_acc, self.tok_mean_rank_corr, self.tok_max_rank_corr = calculate_hit_metrics(
|
1181 |
+
estimated_importance=importance_mask,
|
1182 |
+
true_importance=attn_weights,
|
1183 |
+
top_k_ratio=0.5
|
1184 |
+
)
|
1185 |
+
|
1186 |
+
if attention_mask is not None:
|
1187 |
+
attn_weights = attn_weights + attention_mask
|
1188 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype)
|
1189 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
1190 |
+
|
1191 |
+
if self.layer_idx > 0 and self.train_headpredictor:
|
1192 |
+
head_importance_tensor = self.producer.head_importances[:, :, :, self.layer_idx % self.producer_frequency].float().to(attn_output.device)
|
1193 |
+
attn_head_weights = attn_output.mean(dim=-1).permute(0, 2, 1)
|
1194 |
+
self.headmsemagn_loss = self.headmseloss(attn_head_weights, head_importance_tensor).mean()
|
1195 |
+
|
1196 |
+
if self.calc_hitrates:
|
1197 |
+
self.head_hit_acc, self.head_mean_rank_corr, self.head_max_rank_corr = calculate_hit_metrics(
|
1198 |
+
estimated_importance=head_importance_tensor,
|
1199 |
+
true_importance=attn_head_weights,
|
1200 |
+
top_k_ratio=0.5
|
1201 |
+
)
|
1202 |
+
else:
|
1203 |
+
self.headmsemagn_loss = 0
|
1204 |
+
if self.calc_hitrates:
|
1205 |
+
self.head_hit_acc, self.head_mean_rank_corr, self.head_max_rank_corr = 0, 0, 0
|
1206 |
+
|
1207 |
+
|
1208 |
+
checkeverytime = hasattr(self, 'test_with_thresholds')
|
1209 |
+
if checkeverytime:
|
1210 |
+
checkeverytime = self.test_with_thresholds
|
1211 |
+
if final_mask is not None:
|
1212 |
+
if self.effective_sparsity is None or checkeverytime:
|
1213 |
+
true_mask = final_mask + attention_mask
|
1214 |
+
num_deact = true_mask.bool().sum(dim=-1) # Number of tokens disabled.
|
1215 |
+
causally_deact = (attention_mask.bool()).sum(dim=-1).expand_as(num_deact) # Number of tokens disabled causally anyway
|
1216 |
+
additional_deact = (num_deact - causally_deact)
|
1217 |
+
num_active = (~attention_mask.bool()).sum(dim=-1).expand_as(num_deact) # Number of tokens active at this position if zero-sparsity
|
1218 |
+
effective_sparsity = 100 * (additional_deact.float() / num_active.float()).mean().item()
|
1219 |
+
self.effective_sparsity = effective_sparsity
|
1220 |
+
print("Effective Sparsity:", effective_sparsity, "%\t Sequence Length:", q_len)
|
1221 |
+
if self.layer_idx == 0:
|
1222 |
+
if self.effective_sparsity is None:
|
1223 |
+
self.effective_sparsity = 0.0
|
1224 |
+
|
1225 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
1226 |
+
attn_output = attn_output.view(bsz, -1, self.hidden_size)
|
1227 |
+
|
1228 |
+
if self.config.pretraining_tp > 1:
|
1229 |
+
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
|
1230 |
+
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
|
1231 |
+
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
|
1232 |
+
else:
|
1233 |
+
attn_output = self.o_proj(attn_output)
|
1234 |
+
|
1235 |
+
if self.producer is None:
|
1236 |
+
try:
|
1237 |
+
q_importance, k_importance = self.sparse_token_predictor(
|
1238 |
+
hidden_states,
|
1239 |
+
attention_mask=attention_mask,
|
1240 |
+
position_ids=position_ids,
|
1241 |
+
past_key_value=past_key_value, # the same single cache
|
1242 |
+
use_cache=use_cache,
|
1243 |
+
layer_idx=self.layer_idx, # or pass 0
|
1244 |
+
)
|
1245 |
+
if self.train_headpredictor:
|
1246 |
+
head_importances, past_key_value_hp = self.sparse_head_predictor(
|
1247 |
+
hidden_states,
|
1248 |
+
attention_mask=attention_mask,
|
1249 |
+
position_ids=position_ids,
|
1250 |
+
past_key_value=past_key_value_hp,
|
1251 |
+
use_cache=use_cache
|
1252 |
+
)
|
1253 |
+
head_importances = head_importances.view(bsz, q_len, self.num_heads, self.num_hidden_layers) # [B L H N]
|
1254 |
+
q_len = attn_output.size(1)
|
1255 |
+
k_len = k_importance.size(-1)
|
1256 |
+
except:
|
1257 |
+
print(traceback.format_exc())
|
1258 |
+
import pdb; pdb.set_trace()
|
1259 |
+
|
1260 |
+
self.q_importance = q_importance
|
1261 |
+
self.k_importance = k_importance
|
1262 |
+
|
1263 |
+
if self.train_headpredictor:
|
1264 |
+
if self.head_importances is None:
|
1265 |
+
self.head_importances = head_importances
|
1266 |
+
else:
|
1267 |
+
self.head_importances = torch.cat([self.head_importances, head_importances], dim=1)
|
1268 |
+
|
1269 |
+
# if self.layer_idx == 31:
|
1270 |
+
# if q_len == 1:
|
1271 |
+
# self.dtok += 1
|
1272 |
+
# print(f"Primary Key-Value Shape: {past_key_value.predictor_primary_key[0].shape}, Importance: {past_key_value.predictor_importance_key[0].shape}, Tok-Decoded: {self.dtok}")
|
1273 |
+
# else:
|
1274 |
+
# self.dtok = 0
|
1275 |
+
|
1276 |
+
if not output_attentions:
|
1277 |
+
attn_weights = None
|
1278 |
+
return attn_output, attn_weights
|
1279 |
+
|
1280 |
+
def convert_kvcache_experimental(model, config, producer_frequency):
|
1281 |
+
producer_layer = None
|
1282 |
+
producer_layer_device = None
|
1283 |
+
layer_counter = {'idx': 0}
|
1284 |
+
|
1285 |
+
def recurse_convert(parent_module):
|
1286 |
+
nonlocal producer_layer
|
1287 |
+
nonlocal producer_layer_device
|
1288 |
+
for name, module in parent_module._modules.items():
|
1289 |
+
if len(list(module.children())) > 0:
|
1290 |
+
recurse_convert(module)
|
1291 |
+
if isinstance(module, LlamaAttention):
|
1292 |
+
device = next(module.parameters()).device
|
1293 |
+
dtype = next(module.parameters()).dtype
|
1294 |
+
if layer_counter['idx'] % producer_frequency == 0:
|
1295 |
+
new_module = LlamaAttentionExperimental(config).to(dtype).to(device)
|
1296 |
+
producer_layer = new_module
|
1297 |
+
producer_layer_device = device
|
1298 |
+
else:
|
1299 |
+
new_module = LlamaAttentionExperimental(
|
1300 |
+
config,
|
1301 |
+
producer=producer_layer,
|
1302 |
+
layer_idx=layer_counter['idx']
|
1303 |
+
).to(dtype).to(device)
|
1304 |
+
new_module.load_state_dict(module.state_dict(), strict=False)
|
1305 |
+
is_producer = layer_counter['idx'] % producer_frequency == 0
|
1306 |
+
if is_producer:
|
1307 |
+
print(f"Converted Producer layer '{name}' to LlamaAttentionExperimental at layer index {layer_counter['idx']}")
|
1308 |
+
else:
|
1309 |
+
print(f"Converted layer '{name}' to LlamaAttentionExperimental at layer index {layer_counter['idx']}")
|
1310 |
+
parent_module._modules[name] = new_module
|
1311 |
+
layer_counter['idx'] += 1
|
1312 |
+
recurse_convert(model)
|
1313 |
+
producer_layer = producer_layer.to(producer_layer_device)
|
1314 |
+
return model
|
1315 |
+
|
1316 |
+
|
1317 |
+
# ---------------------------------------------------------------------
|
1318 |
+
# 1) Custom Config subclass
|
1319 |
+
# ---------------------------------------------------------------------
|
1320 |
+
class LlamaButlerConfig(LlamaConfig):
|
1321 |
+
"""
|
1322 |
+
Extends HF's LlamaConfig to hold optional extra parameters for the "Butler" logic.
|
1323 |
+
You can store your custom attributes here, so they can be serialized in config.json.
|
1324 |
+
"""
|
1325 |
+
|
1326 |
+
model_type = "llama_butler"
|
1327 |
+
|
1328 |
+
def __init__(
|
1329 |
+
self,
|
1330 |
+
eval_llm_mode="ExpPred",
|
1331 |
+
token_sparse_method="fixed_50pc",
|
1332 |
+
producer_frequency=8,
|
1333 |
+
dDash=16,
|
1334 |
+
attn_reduce_factor=4,
|
1335 |
+
head_attn_reduce_factor=4,
|
1336 |
+
intdim=256,
|
1337 |
+
flash_attn=False,
|
1338 |
+
train_headpredictor=False,
|
1339 |
+
min_sparse_index=5,
|
1340 |
+
lookahead=0,
|
1341 |
+
sliding_window=None,
|
1342 |
+
**kwargs
|
1343 |
+
):
|
1344 |
+
super().__init__(**kwargs)
|
1345 |
+
self.eval_llm_mode = eval_llm_mode
|
1346 |
+
self.token_sparse_method = token_sparse_method
|
1347 |
+
self.producer_frequency = producer_frequency
|
1348 |
+
self.dDash = dDash
|
1349 |
+
self.attn_reduce_factor = attn_reduce_factor
|
1350 |
+
self.head_attn_reduce_factor = head_attn_reduce_factor
|
1351 |
+
self.intdim = intdim
|
1352 |
+
self.flash_attn = flash_attn
|
1353 |
+
self.train_headpredictor = train_headpredictor
|
1354 |
+
self.min_sparse_index = min_sparse_index
|
1355 |
+
self.lookahead = lookahead
|
1356 |
+
self.sliding_window = sliding_window
|
1357 |
+
|
1358 |
+
|
1359 |
+
# ---------------------------------------------------------------------
|
1360 |
+
# 2) The main Butler model class
|
1361 |
+
# ---------------------------------------------------------------------
|
1362 |
+
class LlamaButlerForCausalLM(LlamaForCausalLM):
|
1363 |
+
"""
|
1364 |
+
A subclass of HF's LlamaForCausalLM that:
|
1365 |
+
- Patches each LlamaAttention to your LlamaAttentionExperimental
|
1366 |
+
- Sets specialized attributes (eval_llm_mode, etc.)
|
1367 |
+
- Overrides _prepare_cache_for_generation to inject PredictorDynamicCache
|
1368 |
+
"""
|
1369 |
+
|
1370 |
+
# Let HF auto-detect this config class from config.json:
|
1371 |
+
config_class = LlamaButlerConfig
|
1372 |
+
|
1373 |
+
def __init__(self, config: LlamaButlerConfig):
|
1374 |
+
super().__init__(config)
|
1375 |
+
"""
|
1376 |
+
HF's LlamaForCausalLM initializes:
|
1377 |
+
self.model = LlamaModel(config)
|
1378 |
+
self.lm_head = nn.Linear(...)
|
1379 |
+
"""
|
1380 |
+
|
1381 |
+
# 1) Patch the underlying LlamaModel to replace LlamaAttention with LlamaAttentionExperimental
|
1382 |
+
self.model = convert_kvcache_experimental(
|
1383 |
+
self.model,
|
1384 |
+
config,
|
1385 |
+
config.producer_frequency
|
1386 |
+
)
|
1387 |
+
|
1388 |
+
# 2) Optionally, set per-module attributes so each LlamaAttentionExperimental knows about them:
|
1389 |
+
for module in self.model.modules():
|
1390 |
+
if module.__class__.__name__.endswith("AttentionExperimental"):
|
1391 |
+
# Set these from your config. Or you can hardcode them if you prefer.
|
1392 |
+
module.eval_llm_mode = config.eval_llm_mode
|
1393 |
+
module.token_sparse_method = config.token_sparse_method
|
1394 |
+
module.set_token_sparsity() # e.g. sets module.sparse_aggression
|
1395 |
+
|
1396 |
+
module.producer_frequency = config.producer_frequency
|
1397 |
+
module.dDash = config.dDash
|
1398 |
+
module.attn_reduce_factor = config.attn_reduce_factor
|
1399 |
+
module.head_attn_reduce_factor = config.head_attn_reduce_factor
|
1400 |
+
module.intdim = config.intdim
|
1401 |
+
module.flash_attn = config.flash_attn
|
1402 |
+
module.train_headpredictor = config.train_headpredictor
|
1403 |
+
module.min_sparse_index = config.min_sparse_index
|
1404 |
+
module.lookahead = config.lookahead
|
1405 |
+
module.sliding_window = config.sliding_window
|
1406 |
+
module.num_layers_pred = config.producer_frequency # example usage
|
1407 |
+
|
1408 |
+
# If this is a "producer layer" (mod.layer_idx % freq == 0), run update_predictor():
|
1409 |
+
if hasattr(module, "layer_idx") and (module.layer_idx % config.producer_frequency == 0):
|
1410 |
+
module.update_predictor()
|
1411 |
+
|
1412 |
+
# 3) Patch the dynamic cache (past_key_values) creation. For your evaluation modes:
|
1413 |
+
if config.eval_llm_mode in ["ExpPred", "ReplAttn"]:
|
1414 |
+
self._prepare_cache_for_generation = self._patched_prepare_cache_for_generation.__get__(
|
1415 |
+
self, self.__class__
|
1416 |
+
)
|
1417 |
+
|
1418 |
+
# -----------------------------------------------------------------
|
1419 |
+
# 3) The custom `_prepare_cache_for_generation` override
|
1420 |
+
# -----------------------------------------------------------------
|
1421 |
+
def _patched_prepare_cache_for_generation(
|
1422 |
+
self,
|
1423 |
+
generation_config: GenerationConfig,
|
1424 |
+
model_kwargs: Dict,
|
1425 |
+
*args,
|
1426 |
+
**kwargs
|
1427 |
+
):
|
1428 |
+
"""
|
1429 |
+
This override injects a PredictorDynamicCache
|
1430 |
+
in place of the standard 'past_key_values'.
|
1431 |
+
"""
|
1432 |
+
if "past_key_values" not in model_kwargs or model_kwargs["past_key_values"] is None:
|
1433 |
+
model_kwargs["past_key_values"] = PredictorDynamicCache()
|
1434 |
+
return model_kwargs
|
pytorch_model.bin.index.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"bos_token": {
|
5 |
+
"__type": "AddedToken",
|
6 |
+
"content": "<|begin▁of▁sentence|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": true,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"clean_up_tokenization_spaces": false,
|
13 |
+
"eos_token": {
|
14 |
+
"__type": "AddedToken",
|
15 |
+
"content": "<|end▁of▁sentence|>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": true,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false
|
20 |
+
},
|
21 |
+
"legacy": true,
|
22 |
+
"model_max_length": 16384,
|
23 |
+
"pad_token": {
|
24 |
+
"__type": "AddedToken",
|
25 |
+
"content": "<|end▁of▁sentence|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": true,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
},
|
31 |
+
"sp_model_kwargs": {},
|
32 |
+
"unk_token": null,
|
33 |
+
"tokenizer_class": "LlamaTokenizerFast",
|
34 |
+
"chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='') %}{%- for message in messages %}{%- if message['role'] == 'system' %}{% set ns.system_prompt = message['content'] %}{%- endif %}{%- endfor %}{{bos_token}}{{ns.system_prompt}}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{'<|User|>' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is none %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls']%}{%- if not ns.is_first %}{{'<|Assistant|><|tool▁calls▁begin|><|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{%- set ns.is_first = true -%}{%- else %}{{'\\n' + '<|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{{'<|tool▁calls▁end|><|end▁of▁sentence|>'}}{%- endif %}{%- endfor %}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is not none %}{%- if ns.is_tool %}{{'<|tool▁outputs▁end|>' + message['content'] + '<|end▁of▁sentence|>'}}{%- set ns.is_tool = false -%}{%- else %}{% set content = message['content'] %}{% if '</think>' in content %}{% set content = content.split('</think>')[-1] %}{% endif %}{{'<|Assistant|>' + content + '<|end▁of▁sentence|>'}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{'<|tool▁outputs▁begin|><|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- set ns.is_output_first = false %}{%- else %}{{'\\n<|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{'<|tool▁outputs▁end|>'}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{'<|Assistant|><think>\\n'}}{% endif %}"
|
35 |
+
}
|