|
!pip install -q transformers[torch] tokenizers datasets evaluate rouge_score sentencepiece huggingface_hub --upgrade |
|
|
|
from huggingface_hub import notebook_login |
|
notebook_login() |
|
|
|
import nltk |
|
from datasets import load_dataset |
|
import evaluate |
|
import numpy as np |
|
from transformers import T5Tokenizer, DataCollatorForSeq2Seq |
|
from transformers import T5ForConditionalGeneration, Seq2SeqTrainingArguments, Seq2SeqTrainer |
|
|
|
|
|
dataset = load_dataset("ajsbsd/openbsd-faq") |
|
dataset = dataset["train"].train_test_split(test_size=0.2) |
|
|
|
|
|
|
|
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base") |
|
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-base") |
|
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model) |
|
|
|
|
|
prefix = "Please answer this question: " |
|
|
|
|
|
def preprocess_function(examples): |
|
"""Add prefix to the sentences, tokenize the text, and set the labels""" |
|
|
|
inputs = [prefix + doc for doc in examples["question"]] |
|
model_inputs = tokenizer(inputs, max_length=128, truncation=True) |
|
|
|
|
|
labels = tokenizer(text_target=examples["answer"], max_length=512, truncation=True) |
|
model_inputs["labels"] = labels["input_ids"] |
|
return model_inputs |
|
|
|
|
|
tokenized_dataset = dataset.map(preprocess_function, batched=True) |
|
|
|
|
|
nltk.download("punkt", quiet=True) |
|
metric = evaluate.load("rouge") |
|
|
|
def compute_metrics(eval_preds): |
|
preds, labels = eval_preds |
|
|
|
|
|
labels = np.where(labels != -100, labels, tokenizer.pad_token_id) |
|
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True) |
|
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) |
|
|
|
|
|
decoded_preds = ["\n".join(nltk.sent_tokenize(pred.strip())) for pred in decoded_preds] |
|
decoded_labels = ["\n".join(nltk.sent_tokenize(label.strip())) for label in decoded_labels] |
|
|
|
result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True) |
|
return result |
|
|
|
|
|
training_args = Seq2SeqTrainingArguments( |
|
output_dir="./flan-t5-base-openbsd-faq", |
|
evaluation_strategy="epoch", |
|
learning_rate=3e-4, |
|
per_device_train_batch_size=8, |
|
per_device_eval_batch_size=4, |
|
weight_decay=0.01, |
|
save_total_limit=3, |
|
num_train_epochs=5, |
|
predict_with_generate=True, |
|
push_to_hub=False |
|
) |
|
|
|
|
|
trainer = Seq2SeqTrainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=tokenized_dataset["train"], |
|
eval_dataset=tokenized_dataset["test"], |
|
tokenizer=tokenizer, |
|
data_collator=data_collator, |
|
compute_metrics=compute_metrics |
|
) |
|
|
|
|
|
trainer.train() |
|
|
|
trainer.push_to_hub() |