add the app.py file
Browse files
app.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
os.system("pip install tensorflow gradio numpy pillow") # Install required packages
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import tensorflow as tf
|
6 |
+
import numpy as np
|
7 |
+
from tensorflow.keras.preprocessing import image
|
8 |
+
|
9 |
+
# Load the trained model
|
10 |
+
model = tf.keras.models.load_model("bone_xray_cnn_model.h5")
|
11 |
+
|
12 |
+
# Prediction function
|
13 |
+
def predict_bone_xray(img):
|
14 |
+
img = img.resize((224, 224)) # Resize image
|
15 |
+
img_array = image.img_to_array(img) / 255.0 # Normalize
|
16 |
+
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
|
17 |
+
|
18 |
+
prediction = np.argmax(model.predict(img_array))
|
19 |
+
|
20 |
+
if prediction == 0:
|
21 |
+
return "Fractured Bone"
|
22 |
+
else:
|
23 |
+
return "Healthy Bone"
|
24 |
+
|
25 |
+
# Create Gradio interface
|
26 |
+
interface = gr.Interface(
|
27 |
+
fn=predict_bone_xray,
|
28 |
+
inputs=gr.Image(type="pil"),
|
29 |
+
outputs="text",
|
30 |
+
title="Bone X-ray Classifier",
|
31 |
+
description="Upload an X-ray image to detect bone fractures."
|
32 |
+
)
|
33 |
+
|
34 |
+
interface.launch()
|