File size: 2,162 Bytes
c17de45 ee9625a c17de45 82d268e ee9625a 82d268e c17de45 82d268e c17de45 82d268e c17de45 82d268e c17de45 82d268e c17de45 82d268e c17de45 82d268e c17de45 82d268e c17de45 82d268e c17de45 82d268e c17de45 82d268e c17de45 82d268e c17de45 82d268e c17de45 82d268e c17de45 82d268e c17de45 82d268e c17de45 82d268e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
base_model: openai-community/roberta-large-openai-detector
library_name: transformers
license: mit
metrics:
- accuracy
tags:
- generated_from_trainer
model-index:
- name: phishing-binary-classification
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# phishing-binary-classification
This model is a fine-tuned version of [openai-community/roberta-large-openai-detector](https://huggingface.co/openai-community/roberta-large-openai-detector) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2813
- Accuracy: 0.882
- Auc: 0.954
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Auc |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-----:|
| 0.5501 | 1.0 | 1250 | 0.4015 | 0.818 | 0.927 |
| 0.4611 | 2.0 | 2500 | 0.3605 | 0.842 | 0.923 |
| 0.4445 | 3.0 | 3750 | 0.3759 | 0.827 | 0.939 |
| 0.413 | 4.0 | 5000 | 0.3058 | 0.866 | 0.946 |
| 0.4152 | 5.0 | 6250 | 0.3554 | 0.837 | 0.953 |
| 0.4086 | 6.0 | 7500 | 0.2908 | 0.874 | 0.949 |
| 0.4057 | 7.0 | 8750 | 0.3338 | 0.853 | 0.946 |
| 0.3966 | 8.0 | 10000 | 0.2807 | 0.88 | 0.953 |
| 0.3961 | 9.0 | 11250 | 0.2836 | 0.878 | 0.952 |
| 0.3962 | 10.0 | 12500 | 0.2813 | 0.882 | 0.954 |
### Framework versions
- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0
|