kellywong commited on
Commit
e7787d9
1 Parent(s): be0358f

update README.md

Browse files
Files changed (1) hide show
  1. README.md +129 -0
README.md CHANGED
@@ -1,3 +1,132 @@
1
  ---
 
2
  license: mit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language: en
3
  license: mit
4
+ datasets:
5
+ - RECCON
6
+ tags:
7
+ - conversational
8
+ inference: false
9
+ model-index:
10
+ - name: Span Extraction
11
+ results:
12
+ - task:
13
+ type: conversational
14
+ name: Span-Extraction
15
+ dataset:
16
+ name: RECCON dataset (on development set)
17
+ type: train and evaluation dataset
18
+ metrics:
19
+ - name: EMPos
20
+ type: EMPos
21
+ value: 0.3437
22
+ - task:
23
+ type: conversational
24
+ name: Span-Extraction
25
+ dataset:
26
+ name: RECCON dataset (on development set)
27
+ type: train and evaluation dataset
28
+ metrics:
29
+ - name: F1Pos
30
+ type: F1Pos
31
+ value: 0.6062
32
+ - task:
33
+ type: conversational
34
+ name: Span-Extraction
35
+ dataset:
36
+ name: RECCON dataset (on development set)
37
+ type: train and evaluation dataset
38
+ metrics:
39
+ - name: F1Neg
40
+ type: F1Neg
41
+ value: 0.8318
42
+ - task:
43
+ type: conversational
44
+ name: Span-Extraction
45
+ dataset:
46
+ name: RECCON dataset (reported by authors in paper on development set)
47
+ type: train and evaluation dataset
48
+ metrics:
49
+ - name: EMPos
50
+ type: EMPos
51
+ value: 0.3464
52
+ - task:
53
+ type: conversational
54
+ name: Span-Extraction
55
+ dataset:
56
+ name: RECCON dataset (reported by authors in paper on development set)
57
+ type: train and evaluation dataset
58
+ metrics:
59
+ - name: F1Pos
60
+ type: F1Pos
61
+ value: 0.6000
62
+ - task:
63
+ type: conversational
64
+ name: Span-Extraction
65
+ dataset:
66
+ name: RECCON dataset (reported by authors in paper on development set)
67
+ type: train and evaluation dataset
68
+ metrics:
69
+ - name: F1Neg
70
+ type: F1Neg
71
+ value: 0.8602
72
+ - task:
73
+ type: conversational
74
+ name: Span-Extraction
75
+ dataset:
76
+ name: RECCON dataset (reported by authors in paper on development set)
77
+ type: train and evaluation dataset
78
+ metrics:
79
+ - name: F1
80
+ type: F1
81
+ value: 0.7571
82
  ---
83
+
84
+ # Causal Span Detection
85
+ You can **test the model** at [SGNLP-Demo](https://sgnlp.aisingapore.net/span-extraction).<br />
86
+ If you want to find out more information, please contact us at [email protected].
87
+
88
+ ## Table of Contents
89
+ - [Model Details](#model-details)
90
+ - [How to Get Started With the Model](#how-to-get-started-with-the-model)
91
+ - [Training](#training)
92
+ - [Model Parameters](#parameters)
93
+ - [Other Information](#other-information)
94
+
95
+ ## Model Details
96
+ **Model Name:** SGNLP-Demo
97
+ - **Description:** This is a causal span extraction model based on SPANBert which recognises that causes of emotions in conversations. Given 4 sets of inputs: target utterance, target utterance's emotion, evidence utterance and conversational history, it returns arrays of start and end logits which can be postprocessed to obtain the span which caused the emotion in the target utterance.
98
+ - **Paper:** Recognizing emotion cause in conversations. arXiv preprint arXiv:2012.11820., Dec 2020.
99
+ - **Author(s):** Poria, S., Majumder, N., Hazarika, D., Ghosal, D., Bhardwaj, R., Jian, S.Y.B., Hong, P., Ghosh, R., Roy, A., Chhaya, N., Gelbukh, A. and Mihalcea, R. (2020).
100
+ - **URL:** https://arxiv.org/abs/2012.11820/
101
+
102
+
103
+ # How to Get Started With the Model
104
+
105
+ ## Install Python package
106
+ SGnlp is an initiative by AI Singapore's NLP Hub. They aim to bridge the gap between research and industry, promote translational research, and encourage adoption of NLP techniques in the industry. <br><br> Various NLP models, other than aspect sentiment analysis are available in the python package. You can try them out at [SGNLP-Demo](https://sgnlp.aisingapore.net/) | [SGNLP-Github](https://github.com/aisingapore/sgnlp).
107
+
108
+ ```python
109
+ pip install sgnlp
110
+
111
+ ```
112
+
113
+ ## Examples
114
+ For more full code (such as Causal Span Detection), please refer to this [SGNLP-Github](https://github.com/aisingapore/sgnlp). <br> Alternatively, you can also try out the [SGNLP-Demo](https://sgnlp.aisingapore.net/span-extraction) for Causal-Span-Detection.
115
+
116
+ # Training
117
+ The train and evaluation datasets were derived from the RECCON dataset. The full dataset can be downloaded from the author's [github repository](https://github.com/declare-lab/RECCON/tree/main/data).
118
+
119
+ #### Training Results
120
+ - **Training Time:** ~3 hours for 12 epochs on a single V100 GPU.
121
+
122
+ # Model Parameters
123
+ - **Model Weights:** [link](https://storage.googleapis.com/sgnlp/models/reccon_span_extraction/pytorch_model.bin)
124
+ - **Model Config:** [link](https://storage.googleapis.com/sgnlp/models/reccon_span_extraction/config.json)
125
+ - **Model Inputs:** Target utterance, emotion in target utterance, evidence utterance and conversational history.
126
+ - **Model Outputs:** Array of start logits and array of end logits. These 2 arrays can be post processed to detemine the start and end of the causal span.
127
+ - **Model Size:** ~411MB
128
+ - **Model Inference Info:** ~ 2 sec on Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz.
129
+ - **Usage Scenarios:** Recognizing emotion cause for phone support satisfaction.
130
+
131
+ # Other Information
132
+ - **Original Code:** [link](https://github.com/declare-lab/RECCON)