File size: 6,591 Bytes
df7c8c6
64a5875
df7c8c6
64a5875
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df7c8c6
64a5875
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7887c07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64a5875
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
---
language: en
license: mit
datasets:
- RECCON
tags:
- conversational
inference: false
model-index:
- name: Emotion Entailment
  results:
  - task:
      type: conversational
      name: Emotion-Entailment
    dataset:
      name: RECCON dataset (on development set)
      type: train and evaluation dataset
    metrics:
    - name: F1Pos
      type: F1Pos
      value: 0.6402
  - task:
      type: conversational
      name: Emotion-Entailment
    dataset:
      name: RECCON dataset (on development set)
      type: train and evaluation dataset
    metrics:
    - name: F1Neg
      type: F1Neg
      value: 0.8784
  - task:
      type: conversational
      name: Emotion-Entailment
    dataset:
      name: RECCON dataset (reported by authors in paper on development set)
      type: train and evaluation dataset
    metrics:
    - name: F1Pos
      type: F1Pos
      value: 0.6428
  - task:
      type: conversational
      name: Emotion-Entailment
    dataset:
      name: RECCON dataset (reported by authors in paper on development set)
      type: train and evaluation dataset
    metrics:
    - name: F1Neg
      type: F1Neg
      value: 0.8874
  - task:
      type: conversational
      name: Emotion-Entailment
    dataset:
      name: RECCON dataset (reported by authors in paper on development set)
      type: train and evaluation dataset
    metrics:
    - name: Macro F1
      type: Macro F1
      value: 0.7651
---

# Emotion Entailment
You can **test the model** at [SGNLP-Demo](https://sgnlp.aisingapore.net/emotion-entailment).<br />
If you want to find out more information, please contact us at [email protected].

## Table of Contents
- [Model Details](#model-details)
- [How to Get Started With the Model](#how-to-get-started-with-the-model)
- [Training](#training)
- [Model Parameters](#parameters)
- [Other Information](#other-information)

## Model Details
**Model Name:** Emotion Entailment
- **Description:** This is an emotion entailment model based on RoBERTa base which recognises the cause behind emotions in conversations. Given 4 sets of inputs: target utterance, target utterance's emotion, evidence utterance and conversational history, it returns the probability of the evidence utterance causing the emotion specified in the target utterance.
- **Paper:** Recognizing emotion cause in conversations. arXiv preprint arXiv:2012.11820., Dec 2020.
- **Author(s):** Poria, S., Majumder, N., Hazarika, D., Ghosal, D., Bhardwaj, R., Jian, S.Y.B., Hong, P., Ghosh, R., Roy, A., Chhaya, N., Gelbukh, A. and Mihalcea, R. (2020).
- **URL:** https://arxiv.org/abs/2012.11820


# How to Get Started With the Model

## Install Python package
SGnlp is an initiative by AI Singapore's NLP Hub. They aim to bridge the gap between research and industry, promote translational research, and encourage adoption of NLP techniques in the industry. <br><br> Various NLP models, other than aspect sentiment analysis are available in the python package. You can try them out at [SGNLP-Demo](https://sgnlp.aisingapore.net/) | [SGNLP-Github](https://github.com/aisingapore/sgnlp).

```python
pip install sgnlp

```

## Examples
For more full code (such as Emotion Entailment), please refer to this [SGNLP-Github](https://github.com/aisingapore/sgnlp). <br> Alternatively, you can also try out the [SGNLP-Demo](https://sgnlp.aisingapore.net/emotion-entailment) for Emotion Entailment.

Example of Emotion Entailment (for happiness):

```python
from sgnlp.models.emotion_entailment import (
    RecconEmotionEntailmentConfig,
    RecconEmotionEntailmentTokenizer,
    RecconEmotionEntailmentModel,
    RecconEmotionEntailmentPreprocessor,
    RecconEmotionEntailmentPostprocessor,
)

# Load model
config = RecconEmotionEntailmentConfig.from_pretrained(
    "https://storage.googleapis.com/sgnlp/models/reccon_emotion_entailment/config.json"
)
tokenizer = RecconEmotionEntailmentTokenizer.from_pretrained("roberta-base")
model = RecconEmotionEntailmentModel.from_pretrained(
    "https://storage.googleapis.com/sgnlp/models/reccon_emotion_entailment/pytorch_model.bin",
    config=config,
)
preprocessor = RecconEmotionEntailmentPreprocessor(tokenizer)
postprocessor = RecconEmotionEntailmentPostprocessor()

# Model predict
input_batch = {
    "emotion": ["happiness", "happiness", "happiness", "happiness"],
    "target_utterance": [
        "Thank you very much .",
        "Thank you very much .",
        "Thank you very much .",
        "Thank you very much .",
    ],
    "evidence_utterance": [
        "It's very thoughtful of you to invite me to your wedding .",
        "How can I forget my old friend ?",
        "My best wishes to you and the bride !",
        "Thank you very much .",
    ],
    "conversation_history": [
        "It's very thoughtful of you to invite me to your wedding . How can I forget my old friend ? My best wishes to you and the bride ! Thank you very much .",
        "It's very thoughtful of you to invite me to your wedding . How can I forget my old friend ? My best wishes to you and the bride ! Thank you very much .",
        "It's very thoughtful of you to invite me to your wedding . How can I forget my old friend ? My best wishes to you and the bride ! Thank you very much .",
        "It's very thoughtful of you to invite me to your wedding . How can I forget my old friend ? My best wishes to you and the bride ! Thank you very much .",
    ],
}

tensor_dict = preprocessor(input_batch)
raw_output = model(**tensor_dict)
output = postprocessor(raw_output)


```

# Training
The train and evaluation datasets were derived from the RECCON dataset. The full dataset can be downloaded from the author's [github repository](https://github.com/declare-lab/RECCON/tree/main/data).

#### Training Results
- **Training Time:** ~3 hours for 12 epochs on a single V100 GPU.

# Model Parameters
- **Model Weights:** [link](https://storage.googleapis.com/sgnlp/models/reccon_emotion_entailment/pytorch_model.bin)
- **Model Config:** [link](https://storage.googleapis.com/sgnlp/models/reccon_emotion_entailment/config.json)
- **Model Inputs:** Target utterance, emotion in target utterance, evidence utterance and conversational history.
- **Model Outputs:** Probability score of whether evidence utterance caused target utterance to exhibit the emotion specified.
- **Model Size:** ~477MB
- **Model Inference Info:**  ~ 2 sec on Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz.
- **Usage Scenarios:** Recognizing emotion cause for phone support satisfaction.

# Other Information
- **Original Code:** [link](https://github.com/declare-lab/RECCON)