aishu15 commited on
Commit
ebea1b9
·
verified ·
1 Parent(s): db15148

Upload README (1).md

Browse files
Files changed (1) hide show
  1. README (1).md +65 -0
README (1).md ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ datasets: Hemanth-thunder/en_ta
4
+ language:
5
+ - ta
6
+ - en
7
+ widget:
8
+ - text: A room without books is like a body without a soul
9
+ - text: hardwork never fail
10
+ - text: Be the change that you wish to see in the world.
11
+ - text: i love seeing moon
12
+ pipeline_tag: text2text-generation
13
+ ---
14
+
15
+ # English to Tamil Translation Model
16
+
17
+ This model translates English sentences into Tamil using a fine-tuned version of the [Mr-Vicky](https://huggingface.co/Mr-Vicky-01/Fine_tune_english_to_tamil) available on the Hugging Face model hub.
18
+
19
+ ## About the Authors
20
+ This model was developed by [suriya7](https://huggingface.co/suriya7) in collaboration with [Mr-Vicky](https://huggingface.co/Mr-Vicky-01).
21
+
22
+ ## Usage
23
+
24
+ To use this model, you can either directly use the Hugging Face `transformers` library or you can use the model via the Hugging Face inference API.
25
+
26
+
27
+ ### Model Information
28
+
29
+ Training Details
30
+
31
+ - **This model has been fine-tuned for English to Tamil translation.**
32
+ - **Training Duration: Over 10 hours**
33
+ - **Loss Achieved: 0.6**
34
+ - **Model Architecture**
35
+ - **The model architecture is based on the Transformer architecture, specifically optimized for sequence-to-sequence tasks.**
36
+
37
+ ### Installation
38
+ To use this model, you'll need to have the `transformers` library installed. You can install it via pip:
39
+ ```bash
40
+ pip install transformers
41
+ ```
42
+ ### Via Transformers Library
43
+
44
+ You can use this model in your Python code like this:
45
+
46
+ ## Inference
47
+ 1. **How to use the model in our notebook**:
48
+ ```python
49
+ # Load model directly
50
+ import torch
51
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
52
+
53
+ checkpoint = "suriya7/English-to-Tamil"
54
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
55
+ model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
56
+
57
+ def language_translator(text):
58
+ tokenized = tokenizer([text], return_tensors='pt')
59
+ out = model.generate(**tokenized, max_length=128)
60
+ return tokenizer.decode(out[0],skip_special_tokens=True)
61
+
62
+ text_to_translate = "hardwork never fail"
63
+ output = language_translator(text_to_translate)
64
+ print(output)
65
+ ```