Upload 13 files
Browse files- .gitattributes +2 -0
- LICENSE +201 -0
- README.md +210 -3
- asagi-1.9B-F16.gguf +3 -0
- config.json +52 -0
- configuration_llava.py +133 -0
- generation_config.json +7 -0
- mmproj-model-f16.gguf +3 -0
- modeling_llava.py +585 -0
- preprocessor_config.json +46 -0
- special_tokens_map.json +55 -0
- text_config.json +30 -0
- tokenizer.json +0 -0
- tokenizer_config.json +105 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
asagi-1.9B-F16.gguf filter=lfs diff=lfs merge=lfs -text
|
37 |
+
mmproj-model-f16.gguf filter=lfs diff=lfs merge=lfs -text
|
LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
README.md
CHANGED
@@ -1,3 +1,210 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- ja
|
5 |
+
base_model:
|
6 |
+
- llm-jp/llm-jp-3-1.8b-instruct
|
7 |
+
pipeline_tag: image-text-to-text
|
8 |
+
library_name: transformers
|
9 |
+
tags:
|
10 |
+
- llava
|
11 |
+
---
|
12 |
+
|
13 |
+
## Model Details
|
14 |
+
|
15 |
+
### Model Description
|
16 |
+
|
17 |
+
This repository provides Asagi-2B, a large-scale Japanese Vision & Language Model (VLM).
|
18 |
+
Asagi-2B has been trained on an extensive Japanese dataset, incorporating a diverse range of data sources.
|
19 |
+
|
20 |
+
A significant portion of the training data is synthesized using models such as the Japanese large language model ([CALM3-22B-Chat](https://huggingface.co/cyberagent/calm3-22b-chat)) and the English Vision & Language Model ([Phi3.5-vision-instruct](https://huggingface.co/microsoft/Phi-3.5-vision-instruct)).
|
21 |
+
|
22 |
+
Importantly, we do not use LLMs that restrict the usage of their outputs in the license terms (e.g., GPT-4) to synthesize the training data.
|
23 |
+
|
24 |
+
|
25 |
+
|Model components|Model / Architecture|Parameters|
|
26 |
+
|:---:|:---:|:---:|
|
27 |
+
|Vision encoder|[siglip-so400m-patch14-384](https://huggingface.co/google/siglip-so400m-patch14-384)|428M|
|
28 |
+
|Projector|2-layer MLP|64M|
|
29 |
+
|LLM|[llm-jp-3-1.8b-instruct](https://huggingface.co/llm-jp/llm-jp-3-1.8b-instruct)|1.8B|
|
30 |
+
|
31 |
+
|
32 |
+
## Usage
|
33 |
+
|
34 |
+
### Requirements
|
35 |
+
|
36 |
+
```txt
|
37 |
+
transformers==4.45.1
|
38 |
+
accelerate==0.34.2
|
39 |
+
torch==2.4.0
|
40 |
+
torchvision==0.19.0
|
41 |
+
```
|
42 |
+
|
43 |
+
### How to use
|
44 |
+
```python
|
45 |
+
import requests
|
46 |
+
import torch
|
47 |
+
import transformers
|
48 |
+
from PIL import Image
|
49 |
+
from transformers import AutoModel, AutoProcessor, GenerationConfig
|
50 |
+
|
51 |
+
transformers.set_seed(42)
|
52 |
+
model_path = "MIL-UT/Asagi-2B"
|
53 |
+
processor = AutoProcessor.from_pretrained(model_path)
|
54 |
+
model = AutoModel.from_pretrained(
|
55 |
+
model_path, trust_remote_code=True,
|
56 |
+
torch_dtype=torch.bfloat16,
|
57 |
+
device_map="auto"
|
58 |
+
)
|
59 |
+
|
60 |
+
generation_config = GenerationConfig(
|
61 |
+
do_sample=True,
|
62 |
+
num_beams=5,
|
63 |
+
max_new_tokens=256,
|
64 |
+
temperature=0.7,
|
65 |
+
repetition_penalty=1.5
|
66 |
+
)
|
67 |
+
|
68 |
+
prompt = ("以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。\n\n"
|
69 |
+
"### 指示:\n<image>\nこの画像を見て、次の質問に詳細かつ具体的に答えてください。この写真はどこで撮影されたものか教えてください。また、画像の内容についても詳しく説明してください。\n\n### 応答:\n")
|
70 |
+
|
71 |
+
# sample image
|
72 |
+
sample_image_url = "https://raw.githubusercontent.com/uehara-mech/uehara-mech.github.io/refs/heads/master/images/shibuya.jpg"
|
73 |
+
image = Image.open(requests.get(sample_image_url, stream=True).raw)
|
74 |
+
|
75 |
+
inputs = processor(
|
76 |
+
text=prompt, images=image, return_tensors="pt"
|
77 |
+
)
|
78 |
+
inputs_text = processor.tokenizer(prompt, return_tensors="pt")
|
79 |
+
inputs['input_ids'] = inputs_text['input_ids']
|
80 |
+
inputs['attention_mask'] = inputs_text['attention_mask']
|
81 |
+
for k, v in inputs.items():
|
82 |
+
if v.dtype == torch.float32:
|
83 |
+
inputs[k] = v.to(model.dtype)
|
84 |
+
inputs = {k: inputs[k].to(model.device) for k in inputs if k != "token_type_ids"}
|
85 |
+
|
86 |
+
generate_ids = model.generate(
|
87 |
+
**inputs,
|
88 |
+
generation_config=generation_config
|
89 |
+
)
|
90 |
+
generated_text = processor.batch_decode(
|
91 |
+
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
92 |
+
)[0]
|
93 |
+
|
94 |
+
# do not print the prompt
|
95 |
+
if "<image>" in prompt:
|
96 |
+
prompt = prompt.replace("<image>", " ")
|
97 |
+
generated_text = generated_text.replace(prompt, "")
|
98 |
+
|
99 |
+
print(f"Generated text: {generated_text}")
|
100 |
+
|
101 |
+
# >>> Generated text: この写真は渋谷の交差点で撮影されたものです。写真には、夜の渋谷の街並みが写っており、多くの高層ビルが立ち並んでいます。特に目を引くのは、中央に位置する大きな白いビルで、その周囲には小さなビルが立ち並んでいます。ビルの窓からは街の明かりが漏れ、街全体が活気に満ちている様子が伝わってきます。
|
102 |
+
|
103 |
+
```
|
104 |
+
|
105 |
+
### Example
|
106 |
+
<img src="https://raw.githubusercontent.com/uehara-mech/uehara-mech.github.io/refs/heads/master/images/shibuya.jpg" width="350">
|
107 |
+
|
108 |
+
| Prompt | Output |
|
109 |
+
|:---|:---|
|
110 |
+
| この画像を見て、次の質問に詳細かつ具体的に答えてください。この写真はどこで撮影されたものか教えてください。また、画像の内容についても詳しく説明してください。 |この写真は渋谷の交差点で撮影されたものです。写真には、夜の渋谷の街並みが写っており、多くの高層ビルが立ち並んでいます。特に目を引くのは、中央に位置する大きな白いビルで、その周囲には小さなビルが立ち並んでいます。ビルの窓からは街の明かりが漏れ、街全体が活気に満ちている様子が伝わってきます。|
|
111 |
+
|
112 |
+
|
113 |
+
### More Examples
|
114 |
+
<details>
|
115 |
+
<summary>Click to expand</summary>
|
116 |
+
<img src="https://raw.githubusercontent.com/uehara-mech/uehara-mech.github.io/refs/heads/master/images/bridge.jpg" width="300">
|
117 |
+
|
118 |
+
| Prompt | Output |
|
119 |
+
|:---|:---|
|
120 |
+
| この画像を見て、次の指示に詳細かつ具体的に答えてください。この写真の内容について詳しく教えてく��さい。 |この写真は、東京のレインボーブリッジを撮影したものです。橋は白く塗装されており、水の上に架かっています。背景には高層ビルが立ち並ぶ都市景観が広がっており、空は澄み切った青色で、白い雲が浮かんでいます。|
|
121 |
+
|
122 |
+
<img src="https://raw.githubusercontent.com/uehara-mech/uehara-mech.github.io/refs/heads/master/images/tower.jpg" width="300">
|
123 |
+
|
124 |
+
| Prompt | Output |
|
125 |
+
|:---|:---|
|
126 |
+
| この画像を見て、次の質問に詳細かつ具体的に答えてください。この写真について評価してください。 |この写真は非常に低い解像度と品質のため、詳細な説明が困難です。|
|
127 |
+
|
128 |
+
<img src="https://raw.githubusercontent.com/uehara-mech/uehara-mech.github.io/refs/heads/master/images/shrine.jpg" width="300">
|
129 |
+
|
130 |
+
| Prompt | Output |
|
131 |
+
|:---|:---|
|
132 |
+
| この画像を見て、次の質問に詳細かつ具体的に答えてください。この写真の神社について、細かいところまで詳しく説明してください。 |この写真の神社は、日本の伝統的な神社建築様式を反映しています。白い壁と赤い屋根のコントラストが美しく、神聖な雰囲気を醸し出しています。入り口には朱塗りの鳥居が立ち、神聖な空間への入り口を象徴しています。また、神社の前には石畳の道が続いており、参拝者を神聖な場所へと導いています。|
|
133 |
+
|
134 |
+
|
135 |
+
<img src="https://raw.githubusercontent.com/uehara-mech/uehara-mech.github.io/refs/heads/master/images/garden.jpg" width="300">
|
136 |
+
|
137 |
+
| Prompt | Output |
|
138 |
+
|:---|:---|
|
139 |
+
| この画像を見て、次の指示に詳細かつ具体的に答えてください。これは日本庭園の中でも、どのような形式に分類される庭園ですか?また、その理由は何ですか? |この日本庭園は、伝統的な日本庭園の形式に基づいており、自然との調和を重視した設計が特徴です。池や岩、石灯籠などが配置され、静かで落ち着いた雰囲気を醸し出しています。このような庭園は、日本の伝統的な美意識である「わびさび」を体現しており、自然と人間の調和を大切にする精神を体現しています。|
|
140 |
+
|
141 |
+
<img src="https://raw.githubusercontent.com/uehara-mech/uehara-mech.github.io/refs/heads/master/images/slope.jpg" width="200">
|
142 |
+
|
143 |
+
| Prompt | Output |
|
144 |
+
|:---|:---|
|
145 |
+
| この画像を見て、次の質問に詳細に答えてください。この画像の場所を舞台とした小説のあらすじを書いてください。 |この画像の場所を舞台にした小説は、日本の伝統的な街並みを舞台にしています。石畳の道を進むと、古い木造建築が立ち並び、歴史を感じさせる風景が広がっています。石畳の道沿いには、緑豊かな植物が生い茂り、自然との調和を大切にする日本の美意識が感じられます。この物語は、都会の喧騒を離れ、自然と一体になれるような、静かで穏やかな雰囲気を醸し出しています。|
|
146 |
+
|
147 |
+
</details>
|
148 |
+
|
149 |
+
|
150 |
+
## Training Details
|
151 |
+
|
152 |
+
### Training Data
|
153 |
+
|
154 |
+
| Dataset | Preprocess | Stage1 | Stage2 | Size |
|
155 |
+
|:--------------------------|:-------------:|:-------:|:------:|:---------:|
|
156 |
+
| ROIS (Ours) | Synthesized | ✓ | ✓ | 8.4M |
|
157 |
+
| Japanese image text pairs | Synthesized | ✓ | ✓ | 4.4M |
|
158 |
+
| Wikipedia | Synthesized | ✓ | ✓ | 2.5M |
|
159 |
+
| Open Images | Translated | ✓ | ✓ | 680K |
|
160 |
+
| DCI | Translated | ✓ | ✓ | 7K |
|
161 |
+
| CommonCatalog CC-BY | Translated | ✓ | ✓ | 3.5M |
|
162 |
+
| LLaVA-Pretrain-JA | | ✓ | ✓ | 550K |
|
163 |
+
| STAIR Captions | | ✓ | ✓ | 410K |
|
164 |
+
| Flickr-JP | | ✓ | ✓ | 160K |
|
165 |
+
| YJ Captions | | ✓ | ✓ | 130K |
|
166 |
+
| Japanese Pascal | | ✓ | ✓ | 5K |
|
167 |
+
| ArtBench | Synthesized | | ✓ | 100K |
|
168 |
+
| GQA | Translated | | ✓ | 1.9M |
|
169 |
+
| VQA v2 | Translated | | ✓ | 880K |
|
170 |
+
| A-OKVQA | Translated | | ✓ | 34K |
|
171 |
+
| OK-VQA | Translated | | ✓ | 18K |
|
172 |
+
| Japanese Visual Genome | Translated | | ✓ | 1.6M |
|
173 |
+
| PangeaInstruct | | | ✓ | 93K |
|
174 |
+
|
175 |
+
Note: ROIS (Ours) is a newly collected dataset crawled from the web specifically for this project.
|
176 |
+
The dataset consists of image and raw text pairs, which are used to synthesize the training data.
|
177 |
+
|
178 |
+
## Evaluation
|
179 |
+
|
180 |
+
We evaluated our model using Heron-Bench, JA-VLM-Bench-in-the-Wild, and JA-VG-VQA-500.
|
181 |
+
We used eval-mm library for this evaluation.
|
182 |
+
|
183 |
+
Here, models with "†" are not trained with GPT-generated data.
|
184 |
+
Bold numbers indicate the best performance among all models, and underlined numbers indicate the best performance among models not trained with GPT-generated data.
|
185 |
+
|
186 |
+
|
187 |
+
| Model | LM Size | Heron-Bench (LLM (%)) | JA-VLM-Bench-In-the-Wild (ROUGE-L) | JA-VLM-Bench-In-the-Wild (LLM (/5.0)) | JA-VG-VQA-500 (ROUGE-L) | JA-VG-VQA-500 (LLM (/5.0)) |
|
188 |
+
|:-------------------------------|:--------:|:--------------------:|:---------------------------------:|:-----------------------------------:|:---------------------:|:-----------------------:|
|
189 |
+
| Japanese InstructBLIP Alpha† | 7B | 14.0 | 20.8 | 2.42 | - | - |
|
190 |
+
| Japanese Stable VLM† | 7B | 24.2 | 23.3 | 2.47 | - | - |
|
191 |
+
| LLaVA-CALM2-SigLIP† | 7B | 43.3 | 47.2 | 3.15 | 17.4 | 3.21 |
|
192 |
+
| Llama-3-EvoVLM-JP-v2 | 8B | 39.3 | 41.4 | 2.92 | 23.5 | 2.96 |
|
193 |
+
| VILA-jp | 13B |**57.2**|**52.3**| **3.69**| 16.2 | 3.62 |
|
194 |
+
| Asagi-2B† | 1.8B | 44.7 | 48.8 | 3.26 | 53.7 | 3.69 |
|
195 |
+
| Asagi-4B† | 3.7B | 49.3 | 49.6 | 3.38 | 55.6 | 3.78 |
|
196 |
+
| Asagi-8B† | 7.2B | 54.7 | 49.4 | <u>3.45</u> | 56.43 | <u>**3.84**</u> |
|
197 |
+
| Asagi-14B† | 13B | <u>55.8</u> | <u>50.8</u> | 3.44 | <u>**56.8**</u> | <u>**3.84**</u> |
|
198 |
+
| GPT-4o | - | 87.6 | 37.6 | 3.85 | 12.1 | 3.58 |
|
199 |
+
|
200 |
+
|
201 |
+
|
202 |
+
|
203 |
+
## Risks and Limitations
|
204 |
+
|
205 |
+
The models released here are in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.
|
206 |
+
|
207 |
+
|
208 |
+
## Model Card Authors
|
209 |
+
|
210 |
+
Kohei Uehara
|
asagi-1.9B-F16.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b670be977d4440ff7c609687a20f4fcf3547bb347bc70451a17a87e66d678425
|
3 |
+
size 3737817472
|
config.json
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "",
|
3 |
+
"architectures": [
|
4 |
+
"LlavaForConditionalGeneration"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_llava.LlavaConfig",
|
8 |
+
"AutoModel": "modeling_llava.LlavaForConditionalGeneration"
|
9 |
+
},
|
10 |
+
"ignore_index": -100,
|
11 |
+
"image_seq_length": 576,
|
12 |
+
"image_token_index": 99574,
|
13 |
+
"model_type": "llava",
|
14 |
+
"pad_token_id": 99575,
|
15 |
+
"projector_hidden_act": "gelu",
|
16 |
+
"projector_hidden_size": 4096,
|
17 |
+
"text_config": {
|
18 |
+
"_name_or_path": "llm-jp/llm-jp-3-1.8b-instruct",
|
19 |
+
"architectures": [
|
20 |
+
"LlamaForCausalLM"
|
21 |
+
],
|
22 |
+
"hidden_size": 2048,
|
23 |
+
"intermediate_size": 7168,
|
24 |
+
"max_position_embeddings": 4096,
|
25 |
+
"model_type": "llama",
|
26 |
+
"num_attention_heads": 16,
|
27 |
+
"num_hidden_layers": 24,
|
28 |
+
"num_key_value_heads": 16,
|
29 |
+
"rms_norm_eps": 1e-05,
|
30 |
+
"torch_dtype": "bfloat16",
|
31 |
+
"vocab_size": 99584
|
32 |
+
},
|
33 |
+
"tie_word_embeddings": false,
|
34 |
+
"torch_dtype": "bfloat16",
|
35 |
+
"transformers_version": "4.45.2",
|
36 |
+
"vision_config": {
|
37 |
+
"hidden_act": "gelu_pytorch_tanh",
|
38 |
+
"hidden_size": 1152,
|
39 |
+
"image_size": 384,
|
40 |
+
"intermediate_size": 4304,
|
41 |
+
"layer_norm_eps": 1e-06,
|
42 |
+
"model_type": "siglip_vision_model",
|
43 |
+
"num_attention_heads": 16,
|
44 |
+
"num_hidden_layers": 27,
|
45 |
+
"patch_size": 14,
|
46 |
+
"projection_dim": 768,
|
47 |
+
"vocab_size": 99584
|
48 |
+
},
|
49 |
+
"vision_feature_layer": -2,
|
50 |
+
"vision_feature_select_strategy": "default",
|
51 |
+
"vocab_size": 99584
|
52 |
+
}
|
configuration_llava.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Microsoft Research & University of Wisconsin-Madison and the HuggingFace Inc. team.
|
3 |
+
# All rights reserved.
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Llava model configuration"""
|
16 |
+
|
17 |
+
from transformers.configuration_utils import PretrainedConfig
|
18 |
+
from transformers.models.auto import CONFIG_MAPPING
|
19 |
+
from transformers.utils import logging
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
|
24 |
+
class LlavaConfig(PretrainedConfig):
|
25 |
+
r"""
|
26 |
+
This is the configuration class to store the configuration of a [`LlavaForConditionalGeneration`].
|
27 |
+
It is used to instantiate an
|
28 |
+
Llava model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
29 |
+
with the defaults will yield a similar configuration to that of the Llava-9B.
|
30 |
+
|
31 |
+
e.g. [llava-hf/llava-9b](https://huggingface.co/llava-hf/llava-9b)
|
32 |
+
|
33 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
34 |
+
documentation from [`PretrainedConfig`] for more information.
|
35 |
+
|
36 |
+
Args:
|
37 |
+
vision_config (`Union[AutoConfig, dict]`, *optional*, defaults to `CLIPVisionConfig`):
|
38 |
+
The config object or dictionary of the vision backbone.
|
39 |
+
text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `LlamaConfig`):
|
40 |
+
The config object or dictionary of the text backbone.
|
41 |
+
ignore_index (`int`, *optional*, defaults to -100):
|
42 |
+
The ignore index for the loss function.
|
43 |
+
image_token_index (`int`, *optional*, defaults to 32000):
|
44 |
+
The image token index to encode the image prompt.
|
45 |
+
projector_hidden_act (`str`, *optional*, defaults to `"gelu"`):
|
46 |
+
The activation function used by the multimodal projector.
|
47 |
+
vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`):
|
48 |
+
The feature selection strategy used to select the vision feature from the vision backbone.
|
49 |
+
Can be one of `"default"` or `"full"`.
|
50 |
+
vision_feature_layer (`int`, *optional*, defaults to -2):
|
51 |
+
The index of the layer to select the vision feature.
|
52 |
+
|
53 |
+
Example:
|
54 |
+
|
55 |
+
```python
|
56 |
+
>>> from transformers import LlavaForConditionalGeneration, LlavaConfig, CLIPVisionConfig, LlamaConfig
|
57 |
+
|
58 |
+
>>> # Initializing a CLIP-vision config
|
59 |
+
>>> vision_config = CLIPVisionConfig()
|
60 |
+
|
61 |
+
>>> # Initializing a Llama config
|
62 |
+
>>> text_config = LlamaConfig()
|
63 |
+
|
64 |
+
>>> # Initializing a Llava llava-1.5-7b style configuration
|
65 |
+
>>> configuration = LlavaConfig(vision_config, text_config)
|
66 |
+
|
67 |
+
>>> # Initializing a model from the llava-1.5-7b style configuration
|
68 |
+
>>> model = LlavaForConditionalGeneration(configuration)
|
69 |
+
|
70 |
+
>>> # Accessing the model configuration
|
71 |
+
>>> configuration = model.config
|
72 |
+
```"""
|
73 |
+
|
74 |
+
model_type = "llava"
|
75 |
+
is_composition = False
|
76 |
+
|
77 |
+
def __init__(
|
78 |
+
self,
|
79 |
+
vision_config=None,
|
80 |
+
text_config=None,
|
81 |
+
ignore_index=-100,
|
82 |
+
image_token_index=32000,
|
83 |
+
projector_hidden_act="gelu",
|
84 |
+
vision_feature_select_strategy="default",
|
85 |
+
vision_feature_layer=-2,
|
86 |
+
projector_hidden_size=None,
|
87 |
+
**kwargs,
|
88 |
+
):
|
89 |
+
self.ignore_index = ignore_index
|
90 |
+
self.image_token_index = image_token_index
|
91 |
+
self.projector_hidden_act = projector_hidden_act
|
92 |
+
|
93 |
+
if vision_feature_select_strategy not in ["default", "full"]:
|
94 |
+
raise ValueError(
|
95 |
+
"vision_feature_select_strategy should be one of 'default', 'full'."
|
96 |
+
f"Got: {vision_feature_select_strategy}"
|
97 |
+
)
|
98 |
+
|
99 |
+
self.vision_feature_select_strategy = vision_feature_select_strategy
|
100 |
+
self.vision_feature_layer = vision_feature_layer
|
101 |
+
|
102 |
+
if isinstance(vision_config, dict):
|
103 |
+
vision_config["model_type"] = (
|
104 |
+
vision_config["model_type"] if "model_type" in vision_config else "clip_vision_model"
|
105 |
+
)
|
106 |
+
vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config)
|
107 |
+
elif vision_config is None:
|
108 |
+
vision_config = CONFIG_MAPPING["clip_vision_model"](
|
109 |
+
intermediate_size=4096,
|
110 |
+
hidden_size=1024,
|
111 |
+
patch_size=14,
|
112 |
+
image_size=336,
|
113 |
+
num_hidden_layers=24,
|
114 |
+
num_attention_heads=16,
|
115 |
+
vocab_size=32000,
|
116 |
+
projection_dim=768,
|
117 |
+
)
|
118 |
+
|
119 |
+
self.vision_config = vision_config
|
120 |
+
|
121 |
+
if isinstance(text_config, dict):
|
122 |
+
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama"
|
123 |
+
text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
|
124 |
+
elif text_config is None:
|
125 |
+
text_config = CONFIG_MAPPING["llama"]()
|
126 |
+
|
127 |
+
self.text_config = text_config
|
128 |
+
|
129 |
+
if projector_hidden_size is None:
|
130 |
+
projector_hidden_size = text_config.hidden_size
|
131 |
+
self.projector_hidden_size = projector_hidden_size
|
132 |
+
|
133 |
+
super().__init__(**kwargs)
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"pad_token_id": 99575,
|
6 |
+
"transformers_version": "4.45.2"
|
7 |
+
}
|
mmproj-model-f16.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eddf029d95058851c07b04d676d0b77038726033fde1a64ff58a5a9f50c85cac
|
3 |
+
size 860986368
|
modeling_llava.py
ADDED
@@ -0,0 +1,585 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""PyTorch Llava model."""
|
16 |
+
|
17 |
+
from dataclasses import dataclass
|
18 |
+
from typing import List, Optional, Tuple, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.utils.checkpoint
|
22 |
+
from torch import nn
|
23 |
+
from transformers import PreTrainedModel
|
24 |
+
from transformers.activations import ACT2FN
|
25 |
+
from transformers.cache_utils import Cache
|
26 |
+
from transformers.modeling_outputs import ModelOutput
|
27 |
+
from transformers.models.auto import AutoModel, AutoModelForCausalLM
|
28 |
+
from transformers.utils import (
|
29 |
+
add_start_docstrings,
|
30 |
+
add_start_docstrings_to_model_forward,
|
31 |
+
logging,
|
32 |
+
replace_return_docstrings,
|
33 |
+
)
|
34 |
+
|
35 |
+
from .configuration_llava import LlavaConfig
|
36 |
+
|
37 |
+
logger = logging.get_logger(__name__)
|
38 |
+
|
39 |
+
_CONFIG_FOR_DOC = "LlavaConfig"
|
40 |
+
|
41 |
+
# Base docstring
|
42 |
+
_CHECKPOINT_FOR_DOC = "llava-hf/llava-1.5-7b-hf"
|
43 |
+
|
44 |
+
|
45 |
+
@dataclass
|
46 |
+
# Copied from transformers.models.idefics.modeling_idefics.IdeficsCausalLMOutputWithPast with Idefics->Llava
|
47 |
+
class LlavaCausalLMOutputWithPast(ModelOutput):
|
48 |
+
"""
|
49 |
+
Base class for Llava causal language model (or autoregressive) outputs.
|
50 |
+
|
51 |
+
Args:
|
52 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
53 |
+
Language modeling loss (for next-token prediction).
|
54 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
55 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
56 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed
|
57 |
+
or when `config.use_cache=True`):
|
58 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
59 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
60 |
+
|
61 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
62 |
+
`past_key_values` input) to speed up sequential decoding.
|
63 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed
|
64 |
+
or when `config.output_hidden_states=True`):
|
65 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
66 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
67 |
+
|
68 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
69 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed
|
70 |
+
or when `config.output_attentions=True`):
|
71 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
72 |
+
sequence_length)`.
|
73 |
+
|
74 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
75 |
+
heads.
|
76 |
+
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
|
77 |
+
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
|
78 |
+
sequence_length, hidden_size)`.
|
79 |
+
|
80 |
+
image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver
|
81 |
+
"""
|
82 |
+
|
83 |
+
loss: Optional[torch.FloatTensor] = None
|
84 |
+
logits: torch.FloatTensor = None
|
85 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None
|
86 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
87 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
88 |
+
image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
89 |
+
|
90 |
+
|
91 |
+
class LlavaMultiModalProjector(nn.Module):
|
92 |
+
def __init__(self, config: LlavaConfig):
|
93 |
+
super().__init__()
|
94 |
+
|
95 |
+
self.linear_1 = nn.Linear(config.vision_config.hidden_size, config.projector_hidden_size, bias=True)
|
96 |
+
self.act = ACT2FN[config.projector_hidden_act]
|
97 |
+
self.linear_2 = nn.Linear(config.projector_hidden_size, config.text_config.hidden_size, bias=True)
|
98 |
+
|
99 |
+
def forward(self, image_features):
|
100 |
+
hidden_states = self.linear_1(image_features)
|
101 |
+
hidden_states = self.act(hidden_states)
|
102 |
+
hidden_states = self.linear_2(hidden_states)
|
103 |
+
return hidden_states
|
104 |
+
|
105 |
+
|
106 |
+
LLAVA_START_DOCSTRING = r"""
|
107 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
108 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
109 |
+
etc.)
|
110 |
+
|
111 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
112 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
113 |
+
and behavior.
|
114 |
+
|
115 |
+
Parameters:
|
116 |
+
config ([`LlavaConfig`] or [`LlavaVisionConfig`]):
|
117 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
118 |
+
load the weights associated with the model, only the configuration. Check out the
|
119 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
120 |
+
"""
|
121 |
+
|
122 |
+
|
123 |
+
@add_start_docstrings(
|
124 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
125 |
+
LLAVA_START_DOCSTRING,
|
126 |
+
)
|
127 |
+
class LlavaPreTrainedModel(PreTrainedModel):
|
128 |
+
config_class = LlavaConfig
|
129 |
+
base_model_prefix = "model"
|
130 |
+
supports_gradient_checkpointing = True
|
131 |
+
_no_split_modules = ["LlavaVisionAttention"]
|
132 |
+
_skip_keys_device_placement = "past_key_values"
|
133 |
+
_supports_flash_attn_2 = True
|
134 |
+
_supports_cache_class = True
|
135 |
+
|
136 |
+
def _init_weights(self, module):
|
137 |
+
# important: this ported version of Llava isn't meant for training from scratch - only
|
138 |
+
# inference and fine-tuning - so the proper init weights code has been removed - the original codebase
|
139 |
+
# https://github.com/haotian-liu/LLaVA/tree/main/llava should serve for that purpose
|
140 |
+
std = (
|
141 |
+
self.config.initializer_range
|
142 |
+
if hasattr(self.config, "initializer_range")
|
143 |
+
else self.config.text_config.initializer_range
|
144 |
+
)
|
145 |
+
|
146 |
+
if hasattr(module, "class_embedding"):
|
147 |
+
module.class_embedding.data.normal_(mean=0.0, std=std)
|
148 |
+
|
149 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
150 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
151 |
+
if module.bias is not None:
|
152 |
+
module.bias.data.zero_()
|
153 |
+
elif isinstance(module, nn.Embedding):
|
154 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
155 |
+
if module.padding_idx is not None:
|
156 |
+
module.weight.data[module.padding_idx].zero_()
|
157 |
+
|
158 |
+
@property
|
159 |
+
def _supports_sdpa(self):
|
160 |
+
"""
|
161 |
+
Retrieve language_model's attribute to check whether the model supports
|
162 |
+
SDPA or not.
|
163 |
+
"""
|
164 |
+
return self.language_model._supports_sdpa
|
165 |
+
|
166 |
+
|
167 |
+
LLAVA_INPUTS_DOCSTRING = r"""
|
168 |
+
Args:
|
169 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
170 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
171 |
+
it.
|
172 |
+
|
173 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
174 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
175 |
+
|
176 |
+
[What are input IDs?](../glossary#input-ids)
|
177 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)):
|
178 |
+
The tensors corresponding to the input images. Pixel values can be obtained using
|
179 |
+
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details ([]`LlavaProcessor`] uses
|
180 |
+
[`CLIPImageProcessor`] for processing images).
|
181 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
182 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
183 |
+
|
184 |
+
- 1 for tokens that are **not masked**,
|
185 |
+
- 0 for tokens that are **masked**.
|
186 |
+
|
187 |
+
[What are attention masks?](../glossary#attention-mask)
|
188 |
+
|
189 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
190 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
191 |
+
|
192 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
193 |
+
`past_key_values`).
|
194 |
+
|
195 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
196 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
197 |
+
information on the default strategy.
|
198 |
+
|
199 |
+
- 1 indicates the head is **not masked**,
|
200 |
+
- 0 indicates the head is **masked**.
|
201 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
202 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
203 |
+
config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
|
204 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed
|
205 |
+
or when `config.use_cache=True`):
|
206 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
207 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
208 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
209 |
+
|
210 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
211 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
212 |
+
|
213 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
214 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
215 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
216 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
217 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
218 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
219 |
+
model's internal embedding lookup matrix.
|
220 |
+
vision_feature_layer (`int`, *optional*, defaults to -2):
|
221 |
+
The index of the layer to select the vision feature.
|
222 |
+
vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`):
|
223 |
+
The feature selection strategy used to select the vision feature from the vision backbone.
|
224 |
+
Can be one of `"default"` or `"full"`.
|
225 |
+
use_cache (`bool`, *optional*):
|
226 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
227 |
+
`past_key_values`).
|
228 |
+
output_attentions (`bool`, *optional*):
|
229 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
230 |
+
tensors for more detail.
|
231 |
+
output_hidden_states (`bool`, *optional*):
|
232 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
233 |
+
more detail.
|
234 |
+
return_dict (`bool`, *optional*):
|
235 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
236 |
+
"""
|
237 |
+
|
238 |
+
|
239 |
+
@add_start_docstrings(
|
240 |
+
"""The LLAVA model which consists of a vision backbone and a language model.""",
|
241 |
+
LLAVA_START_DOCSTRING,
|
242 |
+
)
|
243 |
+
class LlavaForConditionalGeneration(LlavaPreTrainedModel):
|
244 |
+
def __init__(self, config: LlavaConfig):
|
245 |
+
super().__init__(config)
|
246 |
+
self.vision_tower = AutoModel.from_config(config.vision_config)
|
247 |
+
|
248 |
+
self.multi_modal_projector = LlavaMultiModalProjector(config)
|
249 |
+
self.vocab_size = config.text_config.vocab_size
|
250 |
+
self.language_model = AutoModelForCausalLM.from_config(
|
251 |
+
config.text_config, attn_implementation=config._attn_implementation
|
252 |
+
)
|
253 |
+
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
|
254 |
+
self.post_init()
|
255 |
+
|
256 |
+
def get_input_embeddings(self):
|
257 |
+
return self.language_model.get_input_embeddings()
|
258 |
+
|
259 |
+
def set_input_embeddings(self, value):
|
260 |
+
self.language_model.set_input_embeddings(value)
|
261 |
+
|
262 |
+
def get_output_embeddings(self):
|
263 |
+
return self.language_model.get_output_embeddings()
|
264 |
+
|
265 |
+
def set_output_embeddings(self, new_embeddings):
|
266 |
+
self.language_model.set_output_embeddings(new_embeddings)
|
267 |
+
|
268 |
+
def set_decoder(self, decoder):
|
269 |
+
self.language_model.set_decoder(decoder)
|
270 |
+
|
271 |
+
def get_decoder(self):
|
272 |
+
return self.language_model.get_decoder()
|
273 |
+
|
274 |
+
def tie_weights(self):
|
275 |
+
return self.language_model.tie_weights()
|
276 |
+
|
277 |
+
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
|
278 |
+
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
|
279 |
+
# update vocab size
|
280 |
+
self.config.text_config.vocab_size = model_embeds.num_embeddings
|
281 |
+
self.vocab_size = model_embeds.num_embeddings
|
282 |
+
return model_embeds
|
283 |
+
|
284 |
+
def _merge_input_ids_with_image_features(self, image_features, inputs_embeds, input_ids, attention_mask, labels):
|
285 |
+
num_images, num_image_patches, embed_dim = image_features.shape
|
286 |
+
batch_size, sequence_length = input_ids.shape
|
287 |
+
left_padding = not torch.sum(input_ids[:, -1] == torch.tensor(self.pad_token_id))
|
288 |
+
# 1. Create a mask to know where special image tokens are
|
289 |
+
special_image_token_mask = input_ids == self.config.image_token_index
|
290 |
+
num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1)
|
291 |
+
# Compute the maximum embed dimension
|
292 |
+
max_embed_dim = (num_special_image_tokens.max() * (num_image_patches - 1)) + sequence_length
|
293 |
+
batch_indices, non_image_indices = torch.where(input_ids != self.config.image_token_index)
|
294 |
+
|
295 |
+
# 2. Compute the positions where text should be written
|
296 |
+
# Calculate new positions for text tokens in merged image-text sequence.
|
297 |
+
# `special_image_token_mask` identifies image tokens. Each image token will be replaced
|
298 |
+
# by `nb_text_tokens_per_images - 1` text tokens.
|
299 |
+
# `torch.cumsum` computes how each image token shifts subsequent text token positions.
|
300 |
+
# - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one.
|
301 |
+
new_token_positions = torch.cumsum((special_image_token_mask * (num_image_patches - 1) + 1), -1) - 1
|
302 |
+
nb_image_pad = max_embed_dim - 1 - new_token_positions[:, -1]
|
303 |
+
if left_padding:
|
304 |
+
new_token_positions += nb_image_pad[:, None] # offset for left padding
|
305 |
+
text_to_overwrite = new_token_positions[batch_indices, non_image_indices]
|
306 |
+
|
307 |
+
# 3. Create the full embedding, already padded to the maximum position
|
308 |
+
final_embedding = torch.zeros(
|
309 |
+
batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device
|
310 |
+
)
|
311 |
+
final_attention_mask = torch.zeros(
|
312 |
+
batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device
|
313 |
+
)
|
314 |
+
if labels is not None:
|
315 |
+
final_labels = torch.full(
|
316 |
+
(batch_size, max_embed_dim), self.config.ignore_index, dtype=input_ids.dtype, device=input_ids.device
|
317 |
+
)
|
318 |
+
# In case the Vision model or the Language model has been offloaded to CPU, we need to manually
|
319 |
+
# set the corresponding tensors into their correct target device.
|
320 |
+
target_device = inputs_embeds.device
|
321 |
+
batch_indices, non_image_indices, text_to_overwrite = (
|
322 |
+
batch_indices.to(target_device),
|
323 |
+
non_image_indices.to(target_device),
|
324 |
+
text_to_overwrite.to(target_device),
|
325 |
+
)
|
326 |
+
attention_mask = attention_mask.to(target_device)
|
327 |
+
|
328 |
+
# 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"]
|
329 |
+
# we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features
|
330 |
+
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices]
|
331 |
+
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices]
|
332 |
+
if labels is not None:
|
333 |
+
final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_image_indices]
|
334 |
+
|
335 |
+
# 5. Fill the embeddings corresponding to the images.
|
336 |
+
# Anything that is not `text_positions` needs filling (#29835)
|
337 |
+
image_to_overwrite = torch.full(
|
338 |
+
(batch_size, max_embed_dim), True, dtype=torch.bool, device=inputs_embeds.device
|
339 |
+
)
|
340 |
+
image_to_overwrite[batch_indices, text_to_overwrite] = False
|
341 |
+
image_to_overwrite &= image_to_overwrite.cumsum(-1) - 1 >= nb_image_pad[:, None].to(target_device)
|
342 |
+
|
343 |
+
if image_to_overwrite.sum() != image_features.shape[:-1].numel():
|
344 |
+
raise ValueError(
|
345 |
+
f"The input provided to the model are wrong. "
|
346 |
+
f"The number of image tokens is {torch.sum(special_image_token_mask)} while"
|
347 |
+
f" the number of image given to the model is {num_images}. "
|
348 |
+
f"This prevents correct indexing and breaks batch generation."
|
349 |
+
)
|
350 |
+
|
351 |
+
final_embedding[image_to_overwrite] = image_features.contiguous().reshape(-1, embed_dim).to(target_device)
|
352 |
+
final_attention_mask |= image_to_overwrite
|
353 |
+
position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1)
|
354 |
+
|
355 |
+
# 6. Mask out the embedding at padding positions, as we later use the past_key_value value
|
356 |
+
# to determine the non-attended tokens.
|
357 |
+
batch_indices, pad_indices = torch.where(input_ids == self.pad_token_id)
|
358 |
+
indices_to_mask = new_token_positions[batch_indices, pad_indices]
|
359 |
+
|
360 |
+
final_embedding[batch_indices, indices_to_mask] = 0
|
361 |
+
|
362 |
+
if labels is None:
|
363 |
+
final_labels = None
|
364 |
+
|
365 |
+
return final_embedding, final_attention_mask, final_labels, position_ids
|
366 |
+
|
367 |
+
@add_start_docstrings_to_model_forward(LLAVA_INPUTS_DOCSTRING)
|
368 |
+
@replace_return_docstrings(output_type=LlavaCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
369 |
+
def forward(
|
370 |
+
self,
|
371 |
+
input_ids: torch.LongTensor = None,
|
372 |
+
pixel_values: torch.FloatTensor = None,
|
373 |
+
attention_mask: Optional[torch.Tensor] = None,
|
374 |
+
position_ids: Optional[torch.LongTensor] = None,
|
375 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
376 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
377 |
+
vision_feature_layer: Optional[int] = None,
|
378 |
+
vision_feature_select_strategy: Optional[str] = None,
|
379 |
+
labels: Optional[torch.LongTensor] = None,
|
380 |
+
use_cache: Optional[bool] = None,
|
381 |
+
output_attentions: Optional[bool] = None,
|
382 |
+
output_hidden_states: Optional[bool] = None,
|
383 |
+
return_dict: Optional[bool] = None,
|
384 |
+
) -> Union[Tuple, LlavaCausalLMOutputWithPast]:
|
385 |
+
r"""
|
386 |
+
Args:
|
387 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
388 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
389 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
390 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
391 |
+
|
392 |
+
Returns:
|
393 |
+
|
394 |
+
Example:
|
395 |
+
|
396 |
+
```python
|
397 |
+
>>> from PIL import Image
|
398 |
+
>>> import requests
|
399 |
+
>>> from transformers import AutoProcessor, LlavaForConditionalGeneration
|
400 |
+
|
401 |
+
>>> model = LlavaForConditionalGeneration.from_pretrained("llava-hf/llava-1.5-7b-hf")
|
402 |
+
>>> processor = AutoProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf")
|
403 |
+
|
404 |
+
>>> prompt = "USER: <image>\nWhat's the content of the image? ASSISTANT:"
|
405 |
+
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
406 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
407 |
+
|
408 |
+
>>> inputs = processor(text=prompt, images=image, return_tensors="pt")
|
409 |
+
|
410 |
+
>>> # Generate
|
411 |
+
>>> generate_ids = model.generate(**inputs, max_new_tokens=15)
|
412 |
+
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
413 |
+
"USER: \nWhat's the content of the image?
|
414 |
+
ASSISTANT: The image features a busy city street with a stop sign prominently displayed"
|
415 |
+
```"""
|
416 |
+
|
417 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
418 |
+
output_hidden_states = (
|
419 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
420 |
+
)
|
421 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
422 |
+
vision_feature_layer = (
|
423 |
+
vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
|
424 |
+
)
|
425 |
+
vision_feature_select_strategy = (
|
426 |
+
vision_feature_select_strategy
|
427 |
+
if vision_feature_select_strategy is not None
|
428 |
+
else self.config.vision_feature_select_strategy
|
429 |
+
)
|
430 |
+
|
431 |
+
if inputs_embeds is None:
|
432 |
+
# 1. Extra the input embeddings
|
433 |
+
inputs_embeds = self.get_input_embeddings()(input_ids)
|
434 |
+
|
435 |
+
# 2. Merge text and images
|
436 |
+
if pixel_values is not None and input_ids.shape[1] != 1:
|
437 |
+
image_outputs = self.vision_tower(pixel_values, output_hidden_states=True)
|
438 |
+
# this is not memory efficient at all (output_hidden_states=True) will save all the hidden stated.
|
439 |
+
selected_image_feature = image_outputs.hidden_states[vision_feature_layer]
|
440 |
+
|
441 |
+
if vision_feature_select_strategy == "default":
|
442 |
+
selected_image_feature = selected_image_feature[:, 1:]
|
443 |
+
elif vision_feature_select_strategy == "full":
|
444 |
+
selected_image_feature = selected_image_feature
|
445 |
+
else:
|
446 |
+
raise ValueError(
|
447 |
+
f"Unexpected select feature strategy: {self.config.vision_feature_select_strategy}"
|
448 |
+
)
|
449 |
+
|
450 |
+
image_features = self.multi_modal_projector(selected_image_feature)
|
451 |
+
inputs_embeds = inputs_embeds.to(image_features.dtype)
|
452 |
+
inputs_embeds, attention_mask, labels, position_ids = self._merge_input_ids_with_image_features(
|
453 |
+
image_features, inputs_embeds, input_ids, attention_mask, labels
|
454 |
+
)
|
455 |
+
|
456 |
+
# In case input_ids.shape[1] == 1 & pixel_values==None & past_key_values != None, we are in the case of
|
457 |
+
# generation with cache
|
458 |
+
elif past_key_values is not None and pixel_values is not None and input_ids.shape[1] == 1:
|
459 |
+
# Retrieve the first layer to inspect the logits and mask out the hidden states
|
460 |
+
# that are set to 0
|
461 |
+
first_layer_past_key_value = past_key_values[0][0][:, :, :, 0]
|
462 |
+
|
463 |
+
# Sum all dimensions of head_dim (-2) to avoid random errors such as:
|
464 |
+
# https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941
|
465 |
+
batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0)
|
466 |
+
|
467 |
+
# Get the target length
|
468 |
+
target_length = input_ids.shape[1]
|
469 |
+
past_length = first_layer_past_key_value.shape[-1]
|
470 |
+
|
471 |
+
extended_attention_mask = torch.ones(
|
472 |
+
(attention_mask.shape[0], past_length),
|
473 |
+
dtype=attention_mask.dtype,
|
474 |
+
device=attention_mask.device,
|
475 |
+
)
|
476 |
+
|
477 |
+
# Filter out only the tokens that can be un-attended, this can happen
|
478 |
+
# if one uses Llava + Fused modules where the cache on the
|
479 |
+
# first iteration is already big enough, or if one passes custom cache
|
480 |
+
valid_indices = non_attended_tokens < extended_attention_mask.size(-1)
|
481 |
+
new_batch_index = batch_index[valid_indices]
|
482 |
+
new_non_attended_tokens = non_attended_tokens[valid_indices]
|
483 |
+
|
484 |
+
# Zero-out the places where we don't need to attend
|
485 |
+
extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0
|
486 |
+
|
487 |
+
attention_mask = torch.cat((extended_attention_mask, attention_mask[:, -target_length:]), dim=1)
|
488 |
+
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
|
489 |
+
|
490 |
+
outputs = self.language_model(
|
491 |
+
attention_mask=attention_mask,
|
492 |
+
position_ids=position_ids,
|
493 |
+
past_key_values=past_key_values,
|
494 |
+
inputs_embeds=inputs_embeds,
|
495 |
+
use_cache=use_cache,
|
496 |
+
output_attentions=output_attentions,
|
497 |
+
output_hidden_states=output_hidden_states,
|
498 |
+
return_dict=return_dict,
|
499 |
+
)
|
500 |
+
|
501 |
+
logits = outputs[0]
|
502 |
+
|
503 |
+
loss = None
|
504 |
+
if labels is not None:
|
505 |
+
# Shift so that tokens < n predict n
|
506 |
+
if attention_mask is not None:
|
507 |
+
shift_attention_mask = attention_mask[..., 1:]
|
508 |
+
shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous()
|
509 |
+
shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous()
|
510 |
+
else:
|
511 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
512 |
+
shift_labels = labels[..., 1:].contiguous()
|
513 |
+
# Flatten the tokens
|
514 |
+
loss_fct = nn.CrossEntropyLoss()
|
515 |
+
loss = loss_fct(
|
516 |
+
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device)
|
517 |
+
)
|
518 |
+
|
519 |
+
if not return_dict:
|
520 |
+
output = (logits,) + outputs[1:]
|
521 |
+
return (loss,) + output if loss is not None else output
|
522 |
+
|
523 |
+
return LlavaCausalLMOutputWithPast(
|
524 |
+
loss=loss,
|
525 |
+
logits=logits,
|
526 |
+
past_key_values=outputs.past_key_values,
|
527 |
+
hidden_states=outputs.hidden_states,
|
528 |
+
attentions=outputs.attentions,
|
529 |
+
)
|
530 |
+
|
531 |
+
def prepare_inputs_for_generation(
|
532 |
+
self, input_ids, past_key_values=None, inputs_embeds=None, pixel_values=None, attention_mask=None, **kwargs
|
533 |
+
):
|
534 |
+
if past_key_values is not None:
|
535 |
+
if isinstance(past_key_values, Cache):
|
536 |
+
cache_length = past_key_values.get_seq_length()
|
537 |
+
past_length = past_key_values.seen_tokens
|
538 |
+
else:
|
539 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
540 |
+
|
541 |
+
# Keep only the unprocessed tokens:
|
542 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
543 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
544 |
+
# input)
|
545 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
546 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
547 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
548 |
+
# input_ids based on the past_length.
|
549 |
+
elif past_length < input_ids.shape[1]:
|
550 |
+
input_ids = input_ids[:, past_length:]
|
551 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
552 |
+
elif self.config.image_token_index in input_ids:
|
553 |
+
input_ids = input_ids[:, input_ids.shape[1] - 1 :]
|
554 |
+
# If the cache has seen more tokens than it can hold, then the cache has a size limit. Let's discard the
|
555 |
+
# older attention values, as their corresponding values are not part of the input.
|
556 |
+
if cache_length < past_length and attention_mask is not None:
|
557 |
+
attention_mask = attention_mask[:, -(cache_length + input_ids.shape[1]) :]
|
558 |
+
|
559 |
+
position_ids = kwargs.get("position_ids", None)
|
560 |
+
if attention_mask is not None and position_ids is None:
|
561 |
+
# create position_ids on the fly for batch generation
|
562 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
563 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
564 |
+
if past_key_values:
|
565 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
566 |
+
|
567 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
568 |
+
if inputs_embeds is not None and past_key_values is None:
|
569 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
570 |
+
else:
|
571 |
+
model_inputs = {"input_ids": input_ids}
|
572 |
+
|
573 |
+
model_inputs.update(
|
574 |
+
{
|
575 |
+
"position_ids": position_ids,
|
576 |
+
"past_key_values": past_key_values,
|
577 |
+
"use_cache": kwargs.get("use_cache"),
|
578 |
+
"attention_mask": attention_mask,
|
579 |
+
"pixel_values": pixel_values,
|
580 |
+
}
|
581 |
+
)
|
582 |
+
return model_inputs
|
583 |
+
|
584 |
+
def _reorder_cache(self, *args, **kwargs):
|
585 |
+
return self.language_model._reorder_cache(*args, **kwargs)
|
preprocessor_config.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_valid_processor_keys": [
|
3 |
+
"images",
|
4 |
+
"do_resize",
|
5 |
+
"size",
|
6 |
+
"resample",
|
7 |
+
"do_center_crop",
|
8 |
+
"crop_size",
|
9 |
+
"do_rescale",
|
10 |
+
"rescale_factor",
|
11 |
+
"do_normalize",
|
12 |
+
"image_mean",
|
13 |
+
"image_std",
|
14 |
+
"do_convert_rgb",
|
15 |
+
"return_tensors",
|
16 |
+
"data_format",
|
17 |
+
"input_data_format"
|
18 |
+
],
|
19 |
+
"crop_size": {
|
20 |
+
"height": 384,
|
21 |
+
"width": 384
|
22 |
+
},
|
23 |
+
"do_center_crop": true,
|
24 |
+
"do_convert_rgb": true,
|
25 |
+
"do_normalize": true,
|
26 |
+
"do_rescale": true,
|
27 |
+
"do_resize": true,
|
28 |
+
"image_mean": [
|
29 |
+
0.5,
|
30 |
+
0.5,
|
31 |
+
0.5
|
32 |
+
],
|
33 |
+
"image_processor_type": "CLIPImageProcessor",
|
34 |
+
"image_std": [
|
35 |
+
0.5,
|
36 |
+
0.5,
|
37 |
+
0.5
|
38 |
+
],
|
39 |
+
"processor_class": "LlavaProcessor",
|
40 |
+
"resample": 3,
|
41 |
+
"rescale_factor": 0.00392156862745098,
|
42 |
+
"size": {
|
43 |
+
"height": 384,
|
44 |
+
"width": 384
|
45 |
+
}
|
46 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<image>",
|
4 |
+
"<pad>"
|
5 |
+
],
|
6 |
+
"bos_token": {
|
7 |
+
"content": "<s>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false
|
12 |
+
},
|
13 |
+
"cls_token": {
|
14 |
+
"content": "<CLS|LLM-jp>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false
|
19 |
+
},
|
20 |
+
"eos_token": {
|
21 |
+
"content": "</s>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false
|
26 |
+
},
|
27 |
+
"mask_token": {
|
28 |
+
"content": "<MASK|LLM-jp>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false
|
33 |
+
},
|
34 |
+
"pad_token": {
|
35 |
+
"content": "<pad>",
|
36 |
+
"lstrip": false,
|
37 |
+
"normalized": false,
|
38 |
+
"rstrip": false,
|
39 |
+
"single_word": false
|
40 |
+
},
|
41 |
+
"sep_token": {
|
42 |
+
"content": "<SEP|LLM-jp>",
|
43 |
+
"lstrip": false,
|
44 |
+
"normalized": false,
|
45 |
+
"rstrip": false,
|
46 |
+
"single_word": false
|
47 |
+
},
|
48 |
+
"unk_token": {
|
49 |
+
"content": "<unk>",
|
50 |
+
"lstrip": false,
|
51 |
+
"normalized": false,
|
52 |
+
"rstrip": false,
|
53 |
+
"single_word": false
|
54 |
+
}
|
55 |
+
}
|
text_config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "llm-jp/llm-jp-3-1.8b-instruct",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"bos_token_id": 1,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"head_dim": 128,
|
11 |
+
"hidden_act": "silu",
|
12 |
+
"hidden_size": 2048,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 7168,
|
15 |
+
"max_position_embeddings": 4096,
|
16 |
+
"mlp_bias": false,
|
17 |
+
"model_type": "llama",
|
18 |
+
"num_attention_heads": 16,
|
19 |
+
"num_hidden_layers": 24,
|
20 |
+
"num_key_value_heads": 16,
|
21 |
+
"pretraining_tp": 1,
|
22 |
+
"rms_norm_eps": 1e-05,
|
23 |
+
"rope_scaling": null,
|
24 |
+
"rope_theta": 10000,
|
25 |
+
"tie_word_embeddings": false,
|
26 |
+
"torch_dtype": "bfloat16",
|
27 |
+
"transformers_version": "4.45.2",
|
28 |
+
"use_cache": true,
|
29 |
+
"vocab_size": 99584
|
30 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"3": {
|
30 |
+
"content": "<MASK|LLM-jp>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"4": {
|
38 |
+
"content": "<PAD|LLM-jp>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"5": {
|
46 |
+
"content": "<CLS|LLM-jp>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"6": {
|
54 |
+
"content": "<SEP|LLM-jp>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"7": {
|
62 |
+
"content": "<EOD|LLM-jp>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"99574": {
|
70 |
+
"content": "<image>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"99575": {
|
78 |
+
"content": "<pad>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
}
|
85 |
+
},
|
86 |
+
"additional_special_tokens": [
|
87 |
+
"<image>",
|
88 |
+
"<pad>"
|
89 |
+
],
|
90 |
+
"bos_token": "<s>",
|
91 |
+
"chat_template": "{{bos_token}}{% for message in messages %}{% if message['role'] == 'user' %}{{ '\\n\\n### 指示:\\n' + message['content'] }}{% elif message['role'] == 'system' %}{{ '以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。' }}{% elif message['role'] == 'assistant' %}{{ '\\n\\n### 応答:\\n' + message['content'] + eos_token }}{% endif %}{% if loop.last and add_generation_prompt %}{{ '\\n\\n### 応答:\\n' }}{% endif %}{% endfor %}",
|
92 |
+
"clean_up_tokenization_spaces": false,
|
93 |
+
"cls_token": "<CLS|LLM-jp>",
|
94 |
+
"eod_token": "</s>",
|
95 |
+
"eos_token": "</s>",
|
96 |
+
"extra_ids": 0,
|
97 |
+
"mask_token": "<MASK|LLM-jp>",
|
98 |
+
"model_max_length": 1000000000000000019884624838656,
|
99 |
+
"pad_token": "<pad>",
|
100 |
+
"processor_class": "LlavaProcessor",
|
101 |
+
"sep_token": "<SEP|LLM-jp>",
|
102 |
+
"sp_model_kwargs": {},
|
103 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
104 |
+
"unk_token": "<unk>"
|
105 |
+
}
|