update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: testlink-class-2
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# testlink-class-2
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es-pharmaconer](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es-pharmaconer) on an unknown dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.1878
|
23 |
+
- Precision: 0.7
|
24 |
+
- Recall: 0.6959
|
25 |
+
- F1: 0.6979
|
26 |
+
- Accuracy: 0.9758
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 5e-05
|
46 |
+
- train_batch_size: 32
|
47 |
+
- eval_batch_size: 8
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 30
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| No log | 1.0 | 29 | 0.1455 | 0.7025 | 0.6491 | 0.6748 | 0.9758 |
|
58 |
+
| No log | 2.0 | 58 | 0.1404 | 0.6845 | 0.6725 | 0.6785 | 0.9748 |
|
59 |
+
| No log | 3.0 | 87 | 0.1511 | 0.6384 | 0.6608 | 0.6494 | 0.9730 |
|
60 |
+
| No log | 4.0 | 116 | 0.1515 | 0.6353 | 0.6316 | 0.6334 | 0.9723 |
|
61 |
+
| No log | 5.0 | 145 | 0.1563 | 0.6 | 0.7193 | 0.6543 | 0.9714 |
|
62 |
+
| No log | 6.0 | 174 | 0.1820 | 0.6772 | 0.6257 | 0.6505 | 0.9734 |
|
63 |
+
| No log | 7.0 | 203 | 0.1671 | 0.565 | 0.6608 | 0.6092 | 0.9695 |
|
64 |
+
| No log | 8.0 | 232 | 0.1664 | 0.6592 | 0.6901 | 0.6743 | 0.9743 |
|
65 |
+
| No log | 9.0 | 261 | 0.1726 | 0.6725 | 0.6725 | 0.6725 | 0.9754 |
|
66 |
+
| No log | 10.0 | 290 | 0.1929 | 0.6328 | 0.6550 | 0.6437 | 0.9714 |
|
67 |
+
| No log | 11.0 | 319 | 0.1749 | 0.6894 | 0.6491 | 0.6687 | 0.9737 |
|
68 |
+
| No log | 12.0 | 348 | 0.1675 | 0.6889 | 0.7251 | 0.7066 | 0.9745 |
|
69 |
+
| No log | 13.0 | 377 | 0.1806 | 0.6186 | 0.7018 | 0.6575 | 0.9723 |
|
70 |
+
| No log | 14.0 | 406 | 0.1732 | 0.6193 | 0.7135 | 0.6630 | 0.9723 |
|
71 |
+
| No log | 15.0 | 435 | 0.1837 | 0.6080 | 0.7076 | 0.6541 | 0.9714 |
|
72 |
+
| No log | 16.0 | 464 | 0.1774 | 0.6798 | 0.7076 | 0.6934 | 0.9750 |
|
73 |
+
| No log | 17.0 | 493 | 0.1700 | 0.6477 | 0.7310 | 0.6868 | 0.9737 |
|
74 |
+
| 0.0031 | 18.0 | 522 | 0.1719 | 0.6219 | 0.7310 | 0.6720 | 0.9732 |
|
75 |
+
| 0.0031 | 19.0 | 551 | 0.1749 | 0.6440 | 0.7193 | 0.6796 | 0.9743 |
|
76 |
+
| 0.0031 | 20.0 | 580 | 0.1808 | 0.7278 | 0.6725 | 0.6991 | 0.9761 |
|
77 |
+
| 0.0031 | 21.0 | 609 | 0.1753 | 0.6595 | 0.7135 | 0.6854 | 0.9737 |
|
78 |
+
| 0.0031 | 22.0 | 638 | 0.1816 | 0.6489 | 0.7135 | 0.6797 | 0.9739 |
|
79 |
+
| 0.0031 | 23.0 | 667 | 0.1835 | 0.6839 | 0.6959 | 0.6899 | 0.9752 |
|
80 |
+
| 0.0031 | 24.0 | 696 | 0.1864 | 0.7134 | 0.6842 | 0.6985 | 0.9759 |
|
81 |
+
| 0.0031 | 25.0 | 725 | 0.1919 | 0.7516 | 0.6725 | 0.7099 | 0.9765 |
|
82 |
+
| 0.0031 | 26.0 | 754 | 0.1823 | 0.6758 | 0.7193 | 0.6969 | 0.9743 |
|
83 |
+
| 0.0031 | 27.0 | 783 | 0.1822 | 0.6721 | 0.7193 | 0.6949 | 0.9741 |
|
84 |
+
| 0.0031 | 28.0 | 812 | 0.1862 | 0.7083 | 0.6959 | 0.7021 | 0.9759 |
|
85 |
+
| 0.0031 | 29.0 | 841 | 0.1879 | 0.7 | 0.6959 | 0.6979 | 0.9758 |
|
86 |
+
| 0.0031 | 30.0 | 870 | 0.1878 | 0.7 | 0.6959 | 0.6979 | 0.9758 |
|
87 |
+
|
88 |
+
|
89 |
+
### Framework versions
|
90 |
+
|
91 |
+
- Transformers 4.28.1
|
92 |
+
- Pytorch 2.0.0+cu118
|
93 |
+
- Datasets 2.12.0
|
94 |
+
- Tokenizers 0.13.3
|