update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: prueba5
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# prueba5
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es-pharmaconer](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es-pharmaconer) on an unknown dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.2442
|
23 |
+
- Precision: 0.5258
|
24 |
+
- Recall: 0.5574
|
25 |
+
- F1: 0.5411
|
26 |
+
- Accuracy: 0.9609
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 2.75e-05
|
46 |
+
- train_batch_size: 16
|
47 |
+
- eval_batch_size: 8
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 30
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| No log | 1.0 | 57 | 0.2341 | 0.0 | 0.0 | 0.0 | 0.9488 |
|
58 |
+
| No log | 2.0 | 114 | 0.2411 | 0.0 | 0.0 | 0.0 | 0.9488 |
|
59 |
+
| No log | 3.0 | 171 | 0.2150 | 0.0385 | 0.0055 | 0.0096 | 0.9410 |
|
60 |
+
| No log | 4.0 | 228 | 0.1885 | 0.25 | 0.0929 | 0.1355 | 0.9500 |
|
61 |
+
| No log | 5.0 | 285 | 0.1730 | 0.3830 | 0.1967 | 0.2599 | 0.9524 |
|
62 |
+
| No log | 6.0 | 342 | 0.1591 | 0.5098 | 0.2842 | 0.3649 | 0.9581 |
|
63 |
+
| No log | 7.0 | 399 | 0.1665 | 0.5405 | 0.3279 | 0.4082 | 0.9609 |
|
64 |
+
| No log | 8.0 | 456 | 0.1856 | 0.5294 | 0.4918 | 0.5099 | 0.9604 |
|
65 |
+
| 0.1706 | 9.0 | 513 | 0.1727 | 0.5 | 0.5191 | 0.5094 | 0.9611 |
|
66 |
+
| 0.1706 | 10.0 | 570 | 0.1717 | 0.5669 | 0.4863 | 0.5235 | 0.9639 |
|
67 |
+
| 0.1706 | 11.0 | 627 | 0.1913 | 0.5024 | 0.5628 | 0.5309 | 0.9601 |
|
68 |
+
| 0.1706 | 12.0 | 684 | 0.1793 | 0.515 | 0.5628 | 0.5379 | 0.9619 |
|
69 |
+
| 0.1706 | 13.0 | 741 | 0.2009 | 0.5679 | 0.5027 | 0.5333 | 0.9618 |
|
70 |
+
| 0.1706 | 14.0 | 798 | 0.2043 | 0.5333 | 0.5683 | 0.5503 | 0.9604 |
|
71 |
+
| 0.1706 | 15.0 | 855 | 0.2052 | 0.5486 | 0.5246 | 0.5363 | 0.9629 |
|
72 |
+
| 0.1706 | 16.0 | 912 | 0.2234 | 0.5183 | 0.5410 | 0.5294 | 0.9581 |
|
73 |
+
| 0.1706 | 17.0 | 969 | 0.2157 | 0.5424 | 0.5246 | 0.5333 | 0.9616 |
|
74 |
+
| 0.0202 | 18.0 | 1026 | 0.2207 | 0.5025 | 0.5574 | 0.5285 | 0.9596 |
|
75 |
+
| 0.0202 | 19.0 | 1083 | 0.2297 | 0.5025 | 0.5410 | 0.5211 | 0.9573 |
|
76 |
+
| 0.0202 | 20.0 | 1140 | 0.2264 | 0.5131 | 0.5355 | 0.5241 | 0.9593 |
|
77 |
+
| 0.0202 | 21.0 | 1197 | 0.2300 | 0.5181 | 0.5464 | 0.5319 | 0.9593 |
|
78 |
+
| 0.0202 | 22.0 | 1254 | 0.2348 | 0.5241 | 0.5355 | 0.5297 | 0.9604 |
|
79 |
+
| 0.0202 | 23.0 | 1311 | 0.2372 | 0.5196 | 0.5792 | 0.5478 | 0.9588 |
|
80 |
+
| 0.0202 | 24.0 | 1368 | 0.2349 | 0.5319 | 0.5464 | 0.5391 | 0.9613 |
|
81 |
+
| 0.0202 | 25.0 | 1425 | 0.2353 | 0.5312 | 0.5574 | 0.544 | 0.9619 |
|
82 |
+
| 0.0202 | 26.0 | 1482 | 0.2388 | 0.5489 | 0.5519 | 0.5504 | 0.9614 |
|
83 |
+
| 0.0044 | 27.0 | 1539 | 0.2396 | 0.5243 | 0.5301 | 0.5272 | 0.9618 |
|
84 |
+
| 0.0044 | 28.0 | 1596 | 0.2442 | 0.5152 | 0.5574 | 0.5354 | 0.9603 |
|
85 |
+
| 0.0044 | 29.0 | 1653 | 0.2444 | 0.5178 | 0.5574 | 0.5368 | 0.9604 |
|
86 |
+
| 0.0044 | 30.0 | 1710 | 0.2442 | 0.5258 | 0.5574 | 0.5411 | 0.9609 |
|
87 |
+
|
88 |
+
|
89 |
+
### Framework versions
|
90 |
+
|
91 |
+
- Transformers 4.27.4
|
92 |
+
- Pytorch 1.13.1+cu116
|
93 |
+
- Datasets 2.11.0
|
94 |
+
- Tokenizers 0.13.2
|