File size: 4,179 Bytes
271e201 ae51174 3f7f8cc 94f0f9e 3f7f8cc ae51174 94f0f9e ae51174 fdafd1b 3f7f8cc ae51174 271e201 ae51174 3f7f8cc ae51174 3f7f8cc ae51174 3f7f8cc c971c5f 3f7f8cc ae51174 3f7f8cc ae51174 3f7f8cc ae51174 3f7f8cc fdafd1b 3f7f8cc c971c5f 3f7f8cc c971c5f 3f7f8cc c971c5f fdafd1b 3f7f8cc c971c5f 3f7f8cc ae51174 3f7f8cc ae51174 3f7f8cc 271e201 3f7f8cc 271e201 3f7f8cc ae51174 3f7f8cc fdafd1b 3f7f8cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
"""A simple script to run a Flow that can be used for development and debugging."""
import os
import hydra
import aiflows
from aiflows.backends.api_info import ApiInfo
from aiflows.utils.general_helpers import read_yaml_file, quick_load_api_keys
from aiflows import logging
from aiflows.flow_cache import CACHING_PARAMETERS, clear_cache
from aiflows.utils import serving
from aiflows.workers import run_dispatch_worker_thread
from aiflows.messages import FlowMessage
from aiflows.interfaces import KeyInterface
from aiflows.utils.colink_utils import start_colink_server
from aiflows.workers import run_dispatch_worker_thread
# logging.set_verbosity_debug()
dependencies = [
{"url": "aiflows/VisionFlowModule", "revision": os.getcwd()}
]
from aiflows import flow_verse
flow_verse.sync_dependencies(dependencies)
if __name__ == "__main__":
#1. ~~~~~ Set up a colink server ~~~~
cl = start_colink_server()
#2. ~~~~~Load flow config~~~~~~
root_dir = "."
cfg_path = os.path.join(root_dir, "demo.yaml")
cfg = read_yaml_file(cfg_path)
#2.1 ~~~ Set the API information ~~~
# OpenAI backend
api_information = [ApiInfo(backend_used="openai",
api_key = os.getenv("OPENAI_API_KEY"))]
# # Azure backend
# api_information = ApiInfo(backend_used = "azure",
# api_base = os.getenv("AZURE_API_BASE"),
# api_key = os.getenv("AZURE_OPENAI_KEY"),
# api_version = os.getenv("AZURE_API_VERSION") )
quick_load_api_keys(cfg, api_information, key="api_infos")
#3. ~~~~ Serve The Flow ~~~~
serving.serve_flow(
cl = cl,
flow_class_name="flow_modules.aiflows.VisionFlowModule.VisionAtomicFlow",
flow_endpoint="VisionAtomicFlow",
)
#4. ~~~~~Start A Worker Thread~~~~~
run_dispatch_worker_thread(cl)
#5. ~~~~~Mount the flow and get an instance of it via a proxy~~~~~~
proxy_flow= serving.get_flow_instance(
cl=cl,
flow_endpoint="VisionAtomicFlow",
user_id="local",
config_overrides = cfg
)
#6. ~~~ Get the data ~~~
url_image = {"type": "url",
"image": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"}
local_image = {"type": "local_path", "image": "PATH TO YOUR LOCAL IMAGE"}
video = {"video_path": "PATH TO YOUR LOCAL VIDEO", "resize": 768, "frame_step_size": 30, "start_frame": 0, "end_frame": None }
# ~~~ Get the data ~~~
## FOR SINGLE IMAGE
data = {"id": 0, "query": "What’s in this image?", "data": {"images": [url_image]}} # This can be a list of samples
## FOR MULTIPLE IMAGES
# data = {"id": 0, "question": "What are in these images? Is there any difference between them?", "data": {"images": [url_image,local_image]}} # This can be a list of samples
## FOR VIDEO
# data = {"id": 0,
# "question": "These are frames from a video that I want to upload. Generate a compelling description that I can upload along with the video.",
# "data": {"video": video}} # This can be a list of samples
#option1: use the FlowMessage class
input_message = FlowMessage(
data=data,
)
#option2: use the proxy_flow
#input_message = proxy_flow.package_input_message(data = data)
#7. ~~~ Run inference ~~~
future = proxy_flow.get_reply_future(input_message)
#uncomment this line if you would like to get the full message back
#reply_message = future.get_message()
reply_data = future.get_data()
# ~~~ Print the output ~~~
print("~~~~~~Reply~~~~~~")
print(reply_data)
#8. ~~~~ (Optional) apply output interface on reply ~~~~
# output_interface = KeyInterface(
# keys_to_rename={"api_output": "answer"},
# )
# print("Output: ", output_interface(reply_data))
#9. ~~~~~Optional: Unserve Flow~~~~~~
# serving.delete_served_flow(cl, "VisionFlowModule")
|