aiface's picture
Model save
4e259ea verified
metadata
library_name: transformers
license: mit
base_model: FacebookAI/roberta-large-mnli
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: roberta-large-mnli_nli
    results: []

roberta-large-mnli_nli

This model is a fine-tuned version of FacebookAI/roberta-large-mnli on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.9476
  • Accuracy: 0.6009
  • Precision Macro: 0.6028
  • Recall Macro: 0.6009
  • F1 Macro: 0.6014
  • F1 Weighted: 0.6012

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Macro Recall Macro F1 Macro F1 Weighted
1.0485 1.0 143 0.9848 0.5162 0.5491 0.5191 0.4775 0.4758
0.9114 2.0 286 0.9839 0.5264 0.5642 0.5266 0.5150 0.5148
0.8746 3.0 429 0.9618 0.5517 0.5743 0.5522 0.5453 0.5451
0.7909 4.0 572 0.9498 0.5805 0.5859 0.5813 0.5766 0.5762
0.7105 5.0 715 0.9324 0.5956 0.6000 0.5960 0.5939 0.5936
0.6205 6.0 858 0.9797 0.5933 0.5958 0.5934 0.5927 0.5925
0.5113 7.0 1001 1.1925 0.5889 0.5918 0.5896 0.5857 0.5853
0.4181 8.0 1144 1.2665 0.5916 0.5922 0.5918 0.5918 0.5916
0.3218 9.0 1287 1.4587 0.5849 0.5866 0.5848 0.5849 0.5849
0.2543 10.0 1430 1.5554 0.5902 0.5910 0.5908 0.5892 0.5889
0.1851 11.0 1573 1.8125 0.5787 0.5829 0.5782 0.5786 0.5787
0.1316 12.0 1716 2.0182 0.5827 0.5837 0.5826 0.5826 0.5825
0.0884 13.0 1859 2.1233 0.5809 0.5823 0.5810 0.5812 0.5811
0.0708 14.0 2002 2.2924 0.5938 0.5936 0.5943 0.5935 0.5931
0.0527 15.0 2145 2.4595 0.5916 0.5923 0.5919 0.5918 0.5916
0.0334 16.0 2288 2.6315 0.5991 0.6009 0.5991 0.5996 0.5995
0.0186 17.0 2431 2.8367 0.5947 0.5979 0.5946 0.5953 0.5952
0.0179 18.0 2574 2.9197 0.6004 0.6032 0.6004 0.6010 0.6009
0.0113 19.0 2717 2.9423 0.5982 0.6003 0.5982 0.5987 0.5986
0.0134 20.0 2860 2.9476 0.6009 0.6028 0.6009 0.6014 0.6012

Framework versions

  • Transformers 4.55.0
  • Pytorch 2.7.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.21.4