sberbank-ai
commited on
Commit
·
6dedaff
1
Parent(s):
fc14f6f
Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,39 @@
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
+
language:
|
| 4 |
+
- ru
|
| 5 |
+
tags:
|
| 6 |
+
- PyTorch
|
| 7 |
+
- Tensorflow
|
| 8 |
+
- Transformers
|
| 9 |
---
|
| 10 |
+
|
| 11 |
+
# RU-ELECTRA small model (cased) for Sentence Embeddings in Russian language.
|
| 12 |
+
|
| 13 |
+
For better quality, use mean token embeddings.
|
| 14 |
+
## Usage (HuggingFace Models Repository)
|
| 15 |
+
You can use the model directly from the model repository to compute sentence embeddings:
|
| 16 |
+
```python
|
| 17 |
+
from transformers import AutoTokenizer, AutoModel
|
| 18 |
+
import torch
|
| 19 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
| 20 |
+
def mean_pooling(model_output, attention_mask):
|
| 21 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
| 22 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
| 23 |
+
sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
|
| 24 |
+
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
| 25 |
+
return sum_embeddings / sum_mask
|
| 26 |
+
#Sentences we want sentence embeddings for
|
| 27 |
+
sentences = ['Привет! Как твои дела?',
|
| 28 |
+
'А правда, что 42 твое любимое число?']
|
| 29 |
+
#Load AutoModel from huggingface model repository
|
| 30 |
+
tokenizer = AutoTokenizer.from_pretrained("Andrilko/ru_s_electra_small")
|
| 31 |
+
model = AutoModel.from_pretrained("Andrilko/ru_s_electra_small")
|
| 32 |
+
#Tokenize sentences
|
| 33 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=24, return_tensors='pt')
|
| 34 |
+
#Compute token embeddings
|
| 35 |
+
with torch.no_grad():
|
| 36 |
+
model_output = model(**encoded_input)
|
| 37 |
+
#Perform pooling. In this case, mean pooling
|
| 38 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
| 39 |
+
```
|