Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +25 -25
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 281.69 +/- 18.07
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f057d1f1fc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f057d1f2050>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f057d1f20e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f057d1f2170>", "_build": "<function ActorCriticPolicy._build at 0x7f057d1f2200>", "forward": "<function ActorCriticPolicy.forward at 0x7f057d1f2290>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f057d1f2320>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f057d1f23b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f057d1f2440>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f057d1f24d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f057d1f2560>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f057d1f25f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f057d1e7100>"}, "verbose": 0, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685923834728838064, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPrVbwp3By6LfoUumaYWDZfAYM70e8wOQAAgD8AAIA/MyzxvI8Gf7qIV3A7+RkxOFcnE7pNFRm6AACAPwAAgD9Njwe9KQwauuedsbv/CQC1qFPxunhnXTQAAIA/AACAP81vE75xOVW7pgP7u37nabn/2bI8TadjOgAAgD8AAIA/pqG+vcPtWbrVrnG7msVgtqrBGjvgDM41AACAPwAAgD+zKBo+6+qiPwALiT7s0QS/EKiXPnZctT0AAAAAAAAAAJrlYbxIg4K6VSlXurY4F7aMsZK6usN5OQAAgD8AAIA/GuyFvWyHvrv9T1I641Q7PKoXNz2rLSK9AACAPwAAAACAi0C9KTBfumoliroSDYu1kt8eOiJYojkAAIA/AACAP3N2k72uCYm6ohyVusdgPrYL/aM6oHitOQAAgD8AAIA/M3rQvMOJeLqnuI46945eNWVMs7rinKa5AACAPwAAgD+aWjm9HwXCuXaOxLuRLp831I4gO/ndC7cAAIA/AACAP82qxb2P/hq6T0amOqLSEzUl4D27B4vBuQAAgD8AAIA/5kF/vR81y7mJvp06kw6XNUEiHDukzre5AACAPwAAgD9A7PO9KZAIuuLsIrtutmM3aO87u6pYRjoAAIA/AACAPwagKr72qVa8EskVvDZKfLr6Qbs97e1NOwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGLOqEWZZ0WMAWyUTegDjAF0lEdAnglOvECNj3V9lChoBkdAY84EwnH/+GgHTegDaAhHQJ4OGxY7q6h1fZQoaAZHQDd7OdGy5ZtoB0vpaAhHQJ4Q8aJhvzh1fZQoaAZHQGNg7U5MlC1oB03oA2gIR0CeFQkxyn1ndX2UKGgGR0Bn2BkK/mDEaAdN6ANoCEdAnhWnAmAskXV9lChoBkdAaUpwGW2PUGgHTegDaAhHQJ4VuvV3EAJ1fZQoaAZHQF5Oo9LYf4hoB03oA2gIR0CeGRUPQOWjdX2UKGgGR0Bfjd+kP+XJaAdN6ANoCEdAnhuAK8cuJ3V9lChoBkdAYWjysjmjkGgHTegDaAhHQJ4eTG4qgAZ1fZQoaAZHQGS3DyOJcgRoB03oA2gIR0CeI/VbA1vVdX2UKGgGR0BkFLSE12q2aAdN6ANoCEdAniyg6EJ0GXV9lChoBkdAZNNjXnQpnmgHTegDaAhHQJ41SQYDT0B1fZQoaAZHQGcZPjOs1bdoB03oA2gIR0CeV1yvcJt0dX2UKGgGR0Bk7K5mRNh3aAdN6ANoCEdAnlysWO6un3V9lChoBkdAYRbZOi35OGgHTegDaAhHQJ5dCrq+rU91fZQoaAZHQGIU/G2kSEloB03oA2gIR0CeYcuWa+ewdX2UKGgGR0Bhpk7OmixnaAdN6ANoCEdAnmH/0Zm7KHV9lChoBkdAZL04FzMibGgHTegDaAhHQJ5lLWjGkvd1fZQoaAZHQFaqoUBXCCVoB03oA2gIR0CeZwhakhzOdX2UKGgGR0BG/2cBltj1aAdL1WgIR0CeaOq8UVSGdX2UKGgGR0BiuvsNUfgaaAdN6ANoCEdAnmofMW43FXV9lChoBkdAZ3NuYQarFWgHTegDaAhHQJ5qs5OrQw91fZQoaAZHQGPgwVj7Q9loB03oA2gIR0CeasgbZOBUdX2UKGgGR0Bi56kuYhMbaAdN6ANoCEdAnm3PGACnxnV9lChoBkdAY4UQRPGhmGgHTegDaAhHQJ5v6UornT11fZQoaAZHQGVGJ2ll9SdoB03oA2gIR0CecquuzQeFdX2UKGgGR0BlDKq814xDaAdN6ANoCEdAnnkiAxzq8nV9lChoBkdAZKYj7hvR7mgHTegDaAhHQJ6GWEK3NLV1fZQoaAZHQGRx8KXv6TJoB03oA2gIR0CekaNEw35vdX2UKGgGR0BfXHwPRRdhaAdN6ANoCEdAnq8hRyfcvnV9lChoBkdAYsIJ/G2kSGgHTegDaAhHQJ62g7vG6wt1fZQoaAZHQGNE5Ukv9LpoB03oA2gIR0Cevdd+XqqwdX2UKGgGR0BhaXOyE+PjaAdN6ANoCEdAnr5CuIRAbHV9lChoBkdAYKa4bS7XhGgHTegDaAhHQJ7Dm+rU9ZB1fZQoaAZHQGfdUZWJaaFoB03oA2gIR0Cexr56t1ZDdX2UKGgGR0BgGe/QBxPwaAdN6ANoCEdAnsjsVclgMXV9lChoBkdAZKLe0ojOcGgHTegDaAhHQJ7KRp8F6iV1fZQoaAZHQGAM31SOzY5oB03oA2gIR0CeyuAE+xGEdX2UKGgGR0Bma2xdIGyHaAdN6ANoCEdAnssBK15SnHV9lChoBkdAXjyG7Bfrr2gHTegDaAhHQJ7OGIUJv5x1fZQoaAZHQGZUKgqVhThoB03oA2gIR0Ce0H4FzMibdX2UKGgGR0BF8dUCJXQuaAdL5GgIR0Ce0VL+PzWgdX2UKGgGR0BkNzfBN21VaAdN6ANoCEdAntNTqbBoEnV9lChoBkdAXsAKiO/+KmgHTegDaAhHQJ7ZDCBPKuB1fZQoaAZHQFmlypaRp11oB03oA2gIR0Ce4n3KB/ZvdX2UKGgGR0BlZ9S2phnbaAdN6ANoCEdAnuvnvttygnV9lChoBkdAX+CaYu01ImgHTegDaAhHQJ8O11X/5tZ1fZQoaAZHQGSU9l/YraxoB03oA2gIR0CfFI9nK4hEdX2UKGgGR0BdF6ZlWfbsaAdN6ANoCEdAnxlLt3OfNHV9lChoBkdAX0potcv/R2gHTegDaAhHQJ8ZgFPi1iR1fZQoaAZHQGPrcMVk+X9oB03oA2gIR0CfHyc/t6X0dX2UKGgGR0BgnN/DtPYWaAdN6ANoCEdAnyFJCKJl8XV9lChoBkdAQd5DJEH+qGgHS+VoCEdAnyKM+7lJYnV9lChoBkdAXv326ClJpWgHTegDaAhHQJ8iqApazNV1fZQoaAZHQGMCMlsxfv5oB03oA2gIR0CfI0dXDFZQdX2UKGgGR0BgKGO6unuRaAdN6ANoCEdAnyNbjT8YRHV9lChoBkdAWYqMrEtNBWgHTegDaAhHQJ8mYDbJwKl1fZQoaAZHQGObq4hEBsBoB03oA2gIR0CfKIANoakzdX2UKGgGR0Bh6rV6NVBEaAdN6ANoCEdAnyk39aUzK3V9lChoBkdAZT02TgVGkWgHTegDaAhHQJ8q+rZJ04l1fZQoaAZHQGBM0Mw1zhhoB03oA2gIR0CfMyOuJUHZdX2UKGgGR0Bhl5C8e0XxaAdN6ANoCEdAn0Al3MY/FHV9lChoBkdAT3qMzdk8R2gHS9BoCEdAn0UW4iHIqHV9lChoBkdAY7oCr92ovWgHTegDaAhHQJ9JF9kSVW11fZQoaAZHQGSltWMju8doB03oA2gIR0CfZg1WbPQfdX2UKGgGRz/2dh3JPqLTaAdL9GgIR0CfbsEwFkhBdX2UKGgGR0Bil0WKuSwGaAdN6ANoCEdAn3WIpYs/ZHV9lChoBkdAX8x6PbO/tmgHTegDaAhHQJ918y0rsjV1fZQoaAZHQGEAaE8JUo9oB03oA2gIR0Cffg4EwFkhdX2UKGgGR0BiMSElE7W/aAdN6ANoCEdAn4BVJtix3XV9lChoBkdAXEkVvddmhGgHTegDaAhHQJ+BqSpzcRF1fZQoaAZHQGFmB8hLXcxoB03oA2gIR0CfgdD/EOy3dX2UKGgGR0BdNqgh8pkPaAdN6ANoCEdAn4JmWyC4BnV9lChoBkdAWEn3BYV6/2gHTegDaAhHQJ+Ceby6MBJ1fZQoaAZHQFHqbqhUR4BoB0vgaAhHQJ+FNUJfICF1fZQoaAZHQGOHdH+ZPVNoB03oA2gIR0CfhZPpIMBqdX2UKGgGR0BhQn8O09haaAdN6ANoCEdAn4evSH/LknV9lChoBkdAZF0XJHRTj2gHTegDaAhHQJ+IVTm4iHJ1fZQoaAZHQGd6hJZntfJoB03oA2gIR0CfifERradudX2UKGgGR8AqH5rxiG34aAdL/mgIR0CfiupZOi35dX2UKGgGR0Bi529xp+MIaAdN6ANoCEdAn5c8ujASF3V9lChoBkdAYcMZdfLLZGgHTegDaAhHQJ+cQswtapx1fZQoaAZHQGYA+cx0uDloB03oA2gIR0CfryAh0QsgdX2UKGgGR0BbZBagVXV9aAdN6ANoCEdAn8tunl4keXV9lChoBkdAZFl7a7EpAmgHTegDaAhHQJ/QWujh1kl1fZQoaAZHQGWpqR2bG3poB03oA2gIR0Cf2gh9b5dodX2UKGgGR0BiDhgZ0jkdaAdN6ANoCEdAn9uxYV6/qXV9lChoBkdAZxkTTvy9VWgHTegDaAhHQJ/b44EOiFl1fZQoaAZHQGIdpnpSrHVoB03oA2gIR0Cf3JLr5ZbIdX2UKGgGR0Bh0xGx2SuAaAdN6ANoCEdAn9ynfEXLvHV9lChoBkdARCRj8UEgXGgHS9VoCEdAn9+GCEpRXXV9lChoBkdAYbcQPqcEvGgHTegDaAhHQJ/gAf3evZB1fZQoaAZHQGapW4/eLvVoB03oA2gIR0Cf4IgG8mKJdX2UKGgGR0BhAiEnLJS0aAdN6ANoCEdAn+Pak690zXV9lChoBkdAXJLEehf0E2gHTegDaAhHQJ/k+7I1cdJ1fZQoaAZHQGNpl9roGINoB03oA2gIR0Cf56uWKMvRdX2UKGgGR0BhxY5T6zmfaAdN6ANoCEdAn+lCaVlf7nV9lChoBkdAZfQLzf779GgHTegDaAhHQJ/6EqSX+l11fZQoaAZHQGF0Jw0fozNoB03oA2gIR0Cf/4HWz4UOdX2UKGgGR0BlzHA6+36RaAdN6ANoCEdAoAfaXBxgiXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8cf9e2c160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8cf9e2c1f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8cf9e2c280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8cf9e2c310>", "_build": "<function ActorCriticPolicy._build at 0x7f8cf9e2c3a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f8cf9e2c430>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8cf9e2c4c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8cf9e2c550>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8cf9e2c5e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8cf9e2c670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8cf9e2c700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8cf9e2c790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f8cf9e1dd40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685931768179504435, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAAa7Wr70eZ687prIuvKQSrjrjxY+oPXhOQAAgD8AAIA/88KWvb3LwD5SYyE+owvBvvUiTz1j87c9AAAAAAAAAADK0lS+dNu2vFkLlr156/i7RosfPpfZwjwAAIA/AACAPzMvYTy+SrY/wpO0PctCN77weqK8Ut5DvQAAAAAAAAAAZhSQvZ8Yv7tbxiu8dfKRPKSeFT0o6na9AACAPwAAgD+mPFg+9FHZPmuOZr5P3uq+RWMAPhK4Ib4AAAAAAAAAAJrfX76ujPC8s2WUu7QKJbo9DFM+Q+bCOgAAgD8AAIA/M/NXOkMZqD/dy3k7K9EFv+ZDEL32E7y8AAAAAAAAAAAaOVK9i74EPxjrOj6jCt++jFUiPTt84z0AAAAAAAAAAJr3lz2MPKk/J4C0PmvA5r4lM2c92LPyPQAAAAAAAAAAkH2bPk8sfD996d0+MqAuv7edBD9aNUw+AAAAAAAAAACaiV48Bz+wPkaGATwVo8K+bPebvBiFPT0AAAAAAAAAAJqjNb3FCm8+PdsKvdMhvr4oZB28Rk9yPAAAAAAAAAAA/VqRvrZQkT84eNK+xwAEv6CqDb9epmG+AAAAAAAAAADNPKo8aV8oPSaxd746CHe+de3zvevHab0AAAAAAAAAABpkXL0pkGK6Ct8xO0Bh8jWfMq46chtQugAAAAAAAAAAM0+TO+NIVj1vwEa9LFh1vrpFrbx+wMe8AAAAAAAAAAAzbPa8cSAyu2q+jDok8oo8C8CAvBXTbz0AAIA/AACAP/MMhz1SLaG73lPCPGlAhj2En748gE/OuwAAgD8AAIA/2qCpPtGCgz9Grcw+82Uwv9OO/j6D7Ag+AAAAAAAAAADNTCQ6z421P4nLAT3v1Bw+pYQ6unO76LsAAAAAAAAAAIBgBz5LlSA/hboevEQt+75HZAY+rR95vQAAAAAAAAAAZkoxvS7XhD06hRU8/S+OvlOIfT3+eHe9AAAAAAAAAAAgIA2+jwJFPyqxt7x1cfq+W6k8vp8KEz4AAAAAAAAAAIA/YT1BWPI+Ey9mvR/Hw75FAi099aUzvAAAAAAAAAAATaR9vdWMTz5dDYo+bQa3vkU49j2bJVU9AAAAAAAAAAAmc+i9PBrkPpTlFz79n72+sJ1PvGiE8j0AAAAAAAAAAM0G9D3XRk0/2/rXPViOB78bbiY+xvfFvAAAAAAAAAAAgHYDvVwPQrrvdQ4zlSJcMIZNK7sMiMezAACAPwAAgD8NC7a9jxZjugIcW7r8KNy06VpLu8VqfjkAAAAAAAAAADMKVj103oM/pmIePv+SGb9HpvA9IEzaPQAAAAAAAAAAWomPPctoXT8aqbs99xcOvxiN7z3urg09AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBMuAZsKsyMAWyUS9OMAXSUR0C+Q7xQ3xWldX2UKGgGR0BxHzMY/FBIaAdL0mgIR0C+Q8MOoYNzdX2UKGgGR0Bywof3evZAaAdL62gIR0C+Q+soDxLCdX2UKGgGR0ByzTzPKMefaAdLwWgIR0C+RAsCLdeqdX2UKGgGR0By05DmbLEDaAdL0WgIR0C+RAhTjvNNdX2UKGgGR0BxMC/Yao/BaAdL7GgIR0C+RD5LVWjodX2UKGgGR0BvYsjHGS6laAdL1GgIR0C+REcdDIBBdX2UKGgGR0ByVfKHO8kEaAdL1mgIR0C+RFGaYu01dX2UKGgGR0Bx2jrSmZVoaAdL8WgIR0C+RFZv5xiodX2UKGgGR0BwwQaKk2xZaAdL42gIR0C+RG7jo6jndX2UKGgGR0Bw65J+UhV3aAdLyWgIR0C+RHyyprDZdX2UKGgGR0BxgjMJQcghaAdL4WgIR0C+RHzErGzbdX2UKGgGR0Bv5bG3nZCfaAdL3GgIR0C+RIBwdbPhdX2UKGgGR0BxXlKEnLJTaAdLz2gIR0C+RIrKRuCPdX2UKGgGR0BxQQ1FYuCgaAdLyGgIR0C+RJIBzV+adX2UKGgGR0BwzhrHlwLmaAdL2mgIR0C+RJaAOJ+EdX2UKGgGR0BwNigWac7RaAdLyWgIR0C+RJ+anaWYdX2UKGgGR0BxlvzAeq7zaAdL3mgIR0C+RLk4aP0adX2UKGgGR0ByW/V7Qb++aAdLymgIR0C+RL9dmg8KdX2UKGgGR0BvFWI2wV0taAdL1mgIR0C+ROU96kZadX2UKGgGR0BzA9ppN9H+aAdNlwFoCEdAvkTwMWoFV3V9lChoBkdAcYW9+PRzBGgHS8loCEdAvkVprIo3JnV9lChoBkdAcpagoPTXrmgHS91oCEdAvkWGrn1WbXV9lChoBkdAcoJUcn3L3mgHS9loCEdAvkWPOgQHzHV9lChoBkdAb18d4mkWRGgHS81oCEdAvkWkcS5AhXV9lChoBkdAcX0tAcDKYGgHS8JoCEdAvkWxPAO8TXV9lChoBkdAck3Qu27Wd2gHS9VoCEdAvkXHyjHn2nV9lChoBkdAbsTbs4T9KmgHS/RoCEdAvkXh09yLh3V9lChoBkdAcjYNipeeF2gHS/toCEdAvkXmALApKHV9lChoBkdAS2Vnwob4rWgHS49oCEdAvkXwo3JgcHV9lChoBkdAclds3hn8K2gHS8loCEdAvkX4WEbo83V9lChoBkdAcAv4Kx9oe2gHS9toCEdAvkX+aH9FWnV9lChoBkdAcZnKODJ2dWgHS+5oCEdAvkYoCLdepnV9lChoBkdAcXEZMcp9Z2gHS9FoCEdAvkYyvV3EAHV9lChoBkdAcEDdbPhQ32gHS/toCEdAvkY5Gb1AaHV9lChoBkdAcfb2bXpW3mgHS8BoCEdAvkZLQtz0YnV9lChoBkdAc1Rkrf+CLGgHS85oCEdAvkZmXIEKV3V9lChoBkdAcystjTa0yGgHS9xoCEdAvkab2zv7WXV9lChoBkdAcXaOSW7e22gHS9JoCEdAvkapFXq7iHV9lChoBkdAUoW8g6ltTGgHS6xoCEdAvkbFqBVdX3V9lChoBkdAcqWZccENfGgHS+NoCEdAvkbK/IsAenV9lChoBkdAcWPY4Qz1smgHS+NoCEdAvkbd/XoTwnV9lChoBkdAcWYJ2dNFjWgHS/xoCEdAvkbgU34sVnV9lChoBkdActLjawljVmgHS9ZoCEdAvkb9dB0IT3V9lChoBkdAcioFbmlqJ2gHS+doCEdAvkcD4cm0FHV9lChoBkdAclDnm7rcCmgHS+JoCEdAvkcBK02LpHV9lChoBkdAcuRyOq//N2gHS9toCEdAvkcRWilBQnV9lChoBkdAcRWC0WuX/2gHS/FoCEdAvkcZSKm8/XV9lChoBkdAcmtsQNCqqGgHS+doCEdAvkdhU83dbnV9lChoBkdAcPX4Qz1scmgHTREBaAhHQL5HbHcDbJx1fZQoaAZHQHG3oYBNmDloB0vYaAhHQL5HwANoak11fZQoaAZHQHNZzMJQcghoB0vYaAhHQL5H6QPqcEx1fZQoaAZHQHRTJa7mMfloB0u8aAhHQL5IBCOWBz51fZQoaAZHQHMof+0gKWtoB0vqaAhHQL5INTIvJzV1fZQoaAZHQHE+AElme19oB0v0aAhHQL5INEgGKQ91fZQoaAZHQHC2fek56t1oB0vsaAhHQL5ISC3PRiR1fZQoaAZHQHEP9Jz1bq1oB0vlaAhHQL5IS83uNPx1fZQoaAZHQHHXXww0waloB0vWaAhHQL5IWGTLW7R1fZQoaAZHQHMppA6dUbVoB0vvaAhHQL5IkwfQrtp1fZQoaAZHQHJpLj1f3N9oB0v7aAhHQL5IqACnxax1fZQoaAZHQHA2AudwvQFoB00CAWgIR0C+SMKWTot+dX2UKGgGR0Byk7hNucc3aAdL32gIR0C+SMYQJ5VwdX2UKGgGR0BuI898qnWKaAdL7mgIR0C+SMuotL+QdX2UKGgGR0BzRM6/7BO6aAdL7mgIR0C+SNZ++dsjdX2UKGgGR0BxFgrbxmTUaAdL22gIR0C+SNeHvc8DdX2UKGgGR0BSDCsbNr0raAdLomgIR0C+SOv6wdKedX2UKGgGR0Btl2f7JnxsaAdLxmgIR0C+SQgPI4lydX2UKGgGR0BwLk+OfdylaAdL1mgIR0C+SQ+7g88tdX2UKGgGR0Bvr35+H8CQaAdL2GgIR0C+SSi+L3sYdX2UKGgGR0ByNJPtUn5SaAdLw2gIR0C+SUZAdGRWdX2UKGgGR0BwrLGXHBDYaAdL02gIR0C+SV1UADJVdX2UKGgGR0BxZWbVjI7vaAdLymgIR0C+SWuh0yP/dX2UKGgGR0ByUQUypJf6aAdL0mgIR0C+SYYouwotdX2UKGgGR0Bwt13jdYW+aAdL1mgIR0C+SaxhhH9WdX2UKGgGR0BxUEQd0aIfaAdL9GgIR0C+Sb9uLrHEdX2UKGgGR0BzFbanJkoXaAdL9GgIR0C+SdW7SRbKdX2UKGgGR0BzQTk8zQ/paAdLz2gIR0C+Sgk0m+j/dX2UKGgGR0BxFvPKMefaaAdL5mgIR0C+SlF1Oj7AdX2UKGgGR0BvGDVtoBaLaAdL02gIR0C+SpW3vx6OdX2UKGgGR0BxNo9B8hLXaAdLvmgIR0C+Sp3zMA3ldX2UKGgGR0BwaOvbGm1qaAdL3WgIR0C+Svpk9U0fdX2UKGgGR0ByTSixmkFfaAdLxWgIR0C+SxtWluWKdX2UKGgGR0BuPPTmW+oMaAdLzWgIR0C+SyRBJI1+dX2UKGgGR0Bkq+eYlY2baAdN6ANoCEdAvktTLaEi+3V9lChoBkdAcWV86V+qi2gHS75oCEdAvkt07r9l3HV9lChoBkdAcXkDXvphW2gHS7loCEdAvkt+tMfzSXV9lChoBkdAcqdSyMUAUGgHS+BoCEdAvku1rzoUz3V9lChoBkdAcM3PDYRNAWgHS+1oCEdAvku6f9P1tnV9lChoBkdAcUNM5wOvuGgHS+loCEdAvkvNFc6eXnV9lChoBkdAcWZW/JvHcWgHS8toCEdAvkv9bX6InHV9lChoBkdAcUOciW3Sa2gHS9BoCEdAvkwgAbQ1JnV9lChoBkdAbpiucMEzPGgHS9hoCEdAvkxWerdWQ3V9lChoBkdAcQA7PIGQjmgHS+FoCEdAvkxfGp++d3V9lChoBkdAcyby925hB2gHS8ZoCEdAvkxkpXp4bHV9lChoBkdAcbsgqVhTfmgHS9JoCEdAvkx159mYjXV9lChoBkdAb26fPomoi2gHS9BoCEdAvkyz/DLr5nV9lChoBkdAcKE2gnMMZ2gHS95oCEdAvkyzbdrO7nV9lChoBkdAcl30elsP8WgHS9NoCEdAvkzbwG4ZuXV9lChoBkdAb9utlqagEmgHS/poCEdAvkzpiONo8XV9lChoBkdAcy8Qf6oES2gHS8toCEdAvk0pK7I1cnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 368, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVgwEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oQj4ZKEjnH5EHyCs4KHiIicYwDaW5jlIoR7xhOBVvVnEN3ik1bVUZBqwB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpSKBdPHSIgAdWJ1Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 32, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a197ad8207b92d34cc80f069a5691411c956c7445b5d8c53c7a23b37ba919a4
|
3 |
+
size 147577
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,54 +4,54 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
-
"verbose":
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
-
":serialized:": "
|
39 |
},
|
40 |
"_last_original_obs": null,
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
-
"_current_progress_remaining": -0.
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
@@ -69,14 +69,14 @@
|
|
69 |
},
|
70 |
"action_space": {
|
71 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
-
":serialized:": "
|
73 |
"n": "4",
|
74 |
"start": "0",
|
75 |
"_shape": [],
|
76 |
"dtype": "int64",
|
77 |
-
"_np_random":
|
78 |
},
|
79 |
-
"n_envs":
|
80 |
"n_steps": 1024,
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f8cf9e2c160>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8cf9e2c1f0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8cf9e2c280>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8cf9e2c310>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f8cf9e2c3a0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f8cf9e2c430>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8cf9e2c4c0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8cf9e2c550>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f8cf9e2c5e0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8cf9e2c670>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8cf9e2c700>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8cf9e2c790>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f8cf9e1dd40>"
|
21 |
},
|
22 |
+
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 3014656,
|
25 |
+
"_total_timesteps": 3000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1685931768179504435,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAAa7Wr70eZ687prIuvKQSrjrjxY+oPXhOQAAgD8AAIA/88KWvb3LwD5SYyE+owvBvvUiTz1j87c9AAAAAAAAAADK0lS+dNu2vFkLlr156/i7RosfPpfZwjwAAIA/AACAPzMvYTy+SrY/wpO0PctCN77weqK8Ut5DvQAAAAAAAAAAZhSQvZ8Yv7tbxiu8dfKRPKSeFT0o6na9AACAPwAAgD+mPFg+9FHZPmuOZr5P3uq+RWMAPhK4Ib4AAAAAAAAAAJrfX76ujPC8s2WUu7QKJbo9DFM+Q+bCOgAAgD8AAIA/M/NXOkMZqD/dy3k7K9EFv+ZDEL32E7y8AAAAAAAAAAAaOVK9i74EPxjrOj6jCt++jFUiPTt84z0AAAAAAAAAAJr3lz2MPKk/J4C0PmvA5r4lM2c92LPyPQAAAAAAAAAAkH2bPk8sfD996d0+MqAuv7edBD9aNUw+AAAAAAAAAACaiV48Bz+wPkaGATwVo8K+bPebvBiFPT0AAAAAAAAAAJqjNb3FCm8+PdsKvdMhvr4oZB28Rk9yPAAAAAAAAAAA/VqRvrZQkT84eNK+xwAEv6CqDb9epmG+AAAAAAAAAADNPKo8aV8oPSaxd746CHe+de3zvevHab0AAAAAAAAAABpkXL0pkGK6Ct8xO0Bh8jWfMq46chtQugAAAAAAAAAAM0+TO+NIVj1vwEa9LFh1vrpFrbx+wMe8AAAAAAAAAAAzbPa8cSAyu2q+jDok8oo8C8CAvBXTbz0AAIA/AACAP/MMhz1SLaG73lPCPGlAhj2En748gE/OuwAAgD8AAIA/2qCpPtGCgz9Grcw+82Uwv9OO/j6D7Ag+AAAAAAAAAADNTCQ6z421P4nLAT3v1Bw+pYQ6unO76LsAAAAAAAAAAIBgBz5LlSA/hboevEQt+75HZAY+rR95vQAAAAAAAAAAZkoxvS7XhD06hRU8/S+OvlOIfT3+eHe9AAAAAAAAAAAgIA2+jwJFPyqxt7x1cfq+W6k8vp8KEz4AAAAAAAAAAIA/YT1BWPI+Ey9mvR/Hw75FAi099aUzvAAAAAAAAAAATaR9vdWMTz5dDYo+bQa3vkU49j2bJVU9AAAAAAAAAAAmc+i9PBrkPpTlFz79n72+sJ1PvGiE8j0AAAAAAAAAAM0G9D3XRk0/2/rXPViOB78bbiY+xvfFvAAAAAAAAAAAgHYDvVwPQrrvdQ4zlSJcMIZNK7sMiMezAACAPwAAgD8NC7a9jxZjugIcW7r8KNy06VpLu8VqfjkAAAAAAAAAADMKVj103oM/pmIePv+SGb9HpvA9IEzaPQAAAAAAAAAAWomPPctoXT8aqbs99xcOvxiN7z3urg09AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
|
39 |
},
|
40 |
"_last_original_obs": null,
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.004885333333333408,
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV5AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBMuAZsKsyMAWyUS9OMAXSUR0C+Q7xQ3xWldX2UKGgGR0BxHzMY/FBIaAdL0mgIR0C+Q8MOoYNzdX2UKGgGR0Bywof3evZAaAdL62gIR0C+Q+soDxLCdX2UKGgGR0ByzTzPKMefaAdLwWgIR0C+RAsCLdeqdX2UKGgGR0By05DmbLEDaAdL0WgIR0C+RAhTjvNNdX2UKGgGR0BxMC/Yao/BaAdL7GgIR0C+RD5LVWjodX2UKGgGR0BvYsjHGS6laAdL1GgIR0C+REcdDIBBdX2UKGgGR0ByVfKHO8kEaAdL1mgIR0C+RFGaYu01dX2UKGgGR0Bx2jrSmZVoaAdL8WgIR0C+RFZv5xiodX2UKGgGR0BwwQaKk2xZaAdL42gIR0C+RG7jo6jndX2UKGgGR0Bw65J+UhV3aAdLyWgIR0C+RHyyprDZdX2UKGgGR0BxgjMJQcghaAdL4WgIR0C+RHzErGzbdX2UKGgGR0Bv5bG3nZCfaAdL3GgIR0C+RIBwdbPhdX2UKGgGR0BxXlKEnLJTaAdLz2gIR0C+RIrKRuCPdX2UKGgGR0BxQQ1FYuCgaAdLyGgIR0C+RJIBzV+adX2UKGgGR0BwzhrHlwLmaAdL2mgIR0C+RJaAOJ+EdX2UKGgGR0BwNigWac7RaAdLyWgIR0C+RJ+anaWYdX2UKGgGR0BxlvzAeq7zaAdL3mgIR0C+RLk4aP0adX2UKGgGR0ByW/V7Qb++aAdLymgIR0C+RL9dmg8KdX2UKGgGR0BvFWI2wV0taAdL1mgIR0C+ROU96kZadX2UKGgGR0BzA9ppN9H+aAdNlwFoCEdAvkTwMWoFV3V9lChoBkdAcYW9+PRzBGgHS8loCEdAvkVprIo3JnV9lChoBkdAcpagoPTXrmgHS91oCEdAvkWGrn1WbXV9lChoBkdAcoJUcn3L3mgHS9loCEdAvkWPOgQHzHV9lChoBkdAb18d4mkWRGgHS81oCEdAvkWkcS5AhXV9lChoBkdAcX0tAcDKYGgHS8JoCEdAvkWxPAO8TXV9lChoBkdAck3Qu27Wd2gHS9VoCEdAvkXHyjHn2nV9lChoBkdAbsTbs4T9KmgHS/RoCEdAvkXh09yLh3V9lChoBkdAcjYNipeeF2gHS/toCEdAvkXmALApKHV9lChoBkdAS2Vnwob4rWgHS49oCEdAvkXwo3JgcHV9lChoBkdAclds3hn8K2gHS8loCEdAvkX4WEbo83V9lChoBkdAcAv4Kx9oe2gHS9toCEdAvkX+aH9FWnV9lChoBkdAcZnKODJ2dWgHS+5oCEdAvkYoCLdepnV9lChoBkdAcXEZMcp9Z2gHS9FoCEdAvkYyvV3EAHV9lChoBkdAcEDdbPhQ32gHS/toCEdAvkY5Gb1AaHV9lChoBkdAcfb2bXpW3mgHS8BoCEdAvkZLQtz0YnV9lChoBkdAc1Rkrf+CLGgHS85oCEdAvkZmXIEKV3V9lChoBkdAcystjTa0yGgHS9xoCEdAvkab2zv7WXV9lChoBkdAcXaOSW7e22gHS9JoCEdAvkapFXq7iHV9lChoBkdAUoW8g6ltTGgHS6xoCEdAvkbFqBVdX3V9lChoBkdAcqWZccENfGgHS+NoCEdAvkbK/IsAenV9lChoBkdAcWPY4Qz1smgHS+NoCEdAvkbd/XoTwnV9lChoBkdAcWYJ2dNFjWgHS/xoCEdAvkbgU34sVnV9lChoBkdActLjawljVmgHS9ZoCEdAvkb9dB0IT3V9lChoBkdAcioFbmlqJ2gHS+doCEdAvkcD4cm0FHV9lChoBkdAclDnm7rcCmgHS+JoCEdAvkcBK02LpHV9lChoBkdAcuRyOq//N2gHS9toCEdAvkcRWilBQnV9lChoBkdAcRWC0WuX/2gHS/FoCEdAvkcZSKm8/XV9lChoBkdAcmtsQNCqqGgHS+doCEdAvkdhU83dbnV9lChoBkdAcPX4Qz1scmgHTREBaAhHQL5HbHcDbJx1fZQoaAZHQHG3oYBNmDloB0vYaAhHQL5HwANoak11fZQoaAZHQHNZzMJQcghoB0vYaAhHQL5H6QPqcEx1fZQoaAZHQHRTJa7mMfloB0u8aAhHQL5IBCOWBz51fZQoaAZHQHMof+0gKWtoB0vqaAhHQL5INTIvJzV1fZQoaAZHQHE+AElme19oB0v0aAhHQL5INEgGKQ91fZQoaAZHQHC2fek56t1oB0vsaAhHQL5ISC3PRiR1fZQoaAZHQHEP9Jz1bq1oB0vlaAhHQL5IS83uNPx1fZQoaAZHQHHXXww0waloB0vWaAhHQL5IWGTLW7R1fZQoaAZHQHMppA6dUbVoB0vvaAhHQL5IkwfQrtp1fZQoaAZHQHJpLj1f3N9oB0v7aAhHQL5IqACnxax1fZQoaAZHQHA2AudwvQFoB00CAWgIR0C+SMKWTot+dX2UKGgGR0Byk7hNucc3aAdL32gIR0C+SMYQJ5VwdX2UKGgGR0BuI898qnWKaAdL7mgIR0C+SMuotL+QdX2UKGgGR0BzRM6/7BO6aAdL7mgIR0C+SNZ++dsjdX2UKGgGR0BxFgrbxmTUaAdL22gIR0C+SNeHvc8DdX2UKGgGR0BSDCsbNr0raAdLomgIR0C+SOv6wdKedX2UKGgGR0Btl2f7JnxsaAdLxmgIR0C+SQgPI4lydX2UKGgGR0BwLk+OfdylaAdL1mgIR0C+SQ+7g88tdX2UKGgGR0Bvr35+H8CQaAdL2GgIR0C+SSi+L3sYdX2UKGgGR0ByNJPtUn5SaAdLw2gIR0C+SUZAdGRWdX2UKGgGR0BwrLGXHBDYaAdL02gIR0C+SV1UADJVdX2UKGgGR0BxZWbVjI7vaAdLymgIR0C+SWuh0yP/dX2UKGgGR0ByUQUypJf6aAdL0mgIR0C+SYYouwotdX2UKGgGR0Bwt13jdYW+aAdL1mgIR0C+SaxhhH9WdX2UKGgGR0BxUEQd0aIfaAdL9GgIR0C+Sb9uLrHEdX2UKGgGR0BzFbanJkoXaAdL9GgIR0C+SdW7SRbKdX2UKGgGR0BzQTk8zQ/paAdLz2gIR0C+Sgk0m+j/dX2UKGgGR0BxFvPKMefaaAdL5mgIR0C+SlF1Oj7AdX2UKGgGR0BvGDVtoBaLaAdL02gIR0C+SpW3vx6OdX2UKGgGR0BxNo9B8hLXaAdLvmgIR0C+Sp3zMA3ldX2UKGgGR0BwaOvbGm1qaAdL3WgIR0C+Svpk9U0fdX2UKGgGR0ByTSixmkFfaAdLxWgIR0C+SxtWluWKdX2UKGgGR0BuPPTmW+oMaAdLzWgIR0C+SyRBJI1+dX2UKGgGR0Bkq+eYlY2baAdN6ANoCEdAvktTLaEi+3V9lChoBkdAcWV86V+qi2gHS75oCEdAvkt07r9l3HV9lChoBkdAcXkDXvphW2gHS7loCEdAvkt+tMfzSXV9lChoBkdAcqdSyMUAUGgHS+BoCEdAvku1rzoUz3V9lChoBkdAcM3PDYRNAWgHS+1oCEdAvku6f9P1tnV9lChoBkdAcUNM5wOvuGgHS+loCEdAvkvNFc6eXnV9lChoBkdAcWZW/JvHcWgHS8toCEdAvkv9bX6InHV9lChoBkdAcUOciW3Sa2gHS9BoCEdAvkwgAbQ1JnV9lChoBkdAbpiucMEzPGgHS9hoCEdAvkxWerdWQ3V9lChoBkdAcQA7PIGQjmgHS+FoCEdAvkxfGp++d3V9lChoBkdAcyby925hB2gHS8ZoCEdAvkxkpXp4bHV9lChoBkdAcbsgqVhTfmgHS9JoCEdAvkx159mYjXV9lChoBkdAb26fPomoi2gHS9BoCEdAvkyz/DLr5nV9lChoBkdAcKE2gnMMZ2gHS95oCEdAvkyzbdrO7nV9lChoBkdAcl30elsP8WgHS9NoCEdAvkzbwG4ZuXV9lChoBkdAb9utlqagEmgHS/poCEdAvkzpiONo8XV9lChoBkdAcy8Qf6oES2gHS8toCEdAvk0pK7I1cnVlLg=="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 368,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
|
|
69 |
},
|
70 |
"action_space": {
|
71 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWVgwEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oQj4ZKEjnH5EHyCs4KHiIicYwDaW5jlIoR7xhOBVvVnEN3ik1bVUZBqwB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpSKBdPHSIgAdWJ1Yi4=",
|
73 |
"n": "4",
|
74 |
"start": "0",
|
75 |
"_shape": [],
|
76 |
"dtype": "int64",
|
77 |
+
"_np_random": "Generator(PCG64)"
|
78 |
},
|
79 |
+
"n_envs": 32,
|
80 |
"n_steps": 1024,
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd4665a8a81bf3929e5e1464eeaa8e2548a47c58726290cee40cde8c3104ce39
|
3 |
size 87929
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43329
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b102098cb0c11ec666e4bc14b81fab974065a318fff63e935b50134c6a91fe28
|
3 |
size 43329
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 281.69213790000003, "std_reward": 18.073483133068468, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-05T03:12:37.355642"}
|