--- language: - en license: mit datasets: - Trelis/tiny-shakespeare pipeline_tag: text-generation library_name: transformers --- # Decoder Language Model Ein kleiner autoregressiver Decoder-only Transformer, trainiert auf Tiny Shakespeare. ## Architektur - d_model=128, num_layers=2, nhead=4 - ~500k Parameter ## Metriken - Loss (Train): 0.6342 - Perplexity (Train): 1.8854 ## Laden ```python from transformers import GPT2Tokenizer import torch from model import DecoderLanguageModel tokenizer = GPT2Tokenizer.from_pretrained("ahmadisakina/decoder-language-model") model = DecoderLanguageModel(vocab_size=tokenizer.vocab_size, d_model=128, nhead=4, num_layers=2) model.load_state_dict(torch.load("pytorch_model.bin")) model.eval() ```