--- language: - en license: apache-2.0 base_model: google/flan-t5-small tags: - text-simplification - paraphrase - natural-language-processing datasets: - agentlans/sentence-paraphrases --- # FLAN-T5 Small Simplifier A fine-tuned text simplification and paraphrasing model based on Google's FLAN-T5 Small, designed to enhance text readability while preserving core semantic meaning. ## Model Details - **Base Model**: [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) - **Task**: Text Simplification and Paraphrasing - **Languages**: English ## Capabilities The model is specialized in: - Reducing text complexity - Generating more readable paraphrases - Maintaining original semantic content ## Intended Use **Primary Use Cases**: - Academic writing simplification - Technical document readability enhancement - Content adaptation for diverse audiences **Limitations**: - Optimized for English language texts - Best performance on sentence-length inputs - May struggle with highly specialized or mixed-language texts ## Usage Example ```python from transformers import pipeline simplifier = pipeline( "text2text-generation", model="agentlans/flan-t5-small-simplifier" ) complex_text = "While navigating the labyrinthine corridors of epistemological uncertainty, the precocious philosopher paused to contemplate the intricate interplay between subjective perception and objective reality." simplified_text = simplifier(complex_text, max_length=128)[0]["generated_text"] print(simplified_text) # The precocious philosopher paused to contemplate the complex interplay between subjective perception and objective reality while navigating the labyrinthine corridors of epistemological uncertainty. ``` ## Training Details **Dataset**: [agentlans/sentence-paraphrases](https://huggingface.co/datasets/agentlans/sentence-paraphrases) - Source: Curated paraphrase collections - Readability assessment using a finetuned [DeBERTa v3 XSmall](https://huggingface.co/agentlans/deberta-v3-xsmall-zyda-2-readability) **Training Hyperparameters**: - Learning Rate: 5e-05 - Batch Size: 8 - Optimizer: Adam - Epochs: 2.0 **Performance Metrics**: | Epoch | Training Loss | Validation Loss | |:-----:|:-------------:|:---------------:| | 0.22 | 1.4423 | 1.2431 | | 0.89 | 1.3595 | 1.1787 | | 1.78 | 1.2952 | 1.1518 | ## Framework - Transformers 4.43.3 - PyTorch 2.3.0+cu121 - Datasets 3.2.0 ## Ethical Considerations Users should review generated text for accuracy and appropriateness, as the model may inherit biases from training data.