agentlans commited on
Commit
b989da3
·
verified ·
1 Parent(s): cdc9bc9

Upload 12 files

Browse files
README.md CHANGED
@@ -1,3 +1,105 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: deberta-v3-xsmall-readability-pretrain
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: deberta-v3-xsmall-readability
8
+ results: []
9
+ ---
10
+
11
+ # English Text Readability Prediction
12
+
13
+ This model card describes a fine-tuned DeBERTa-v3-xsmall model for predicting the readability level of English texts.
14
+
15
+ Suitable for:
16
+ - Assessing educational material complexity
17
+ - Evaluating content readability for diverse audiences
18
+ - Assisting writers in tailoring content to specific reading levels
19
+
20
+ ## Training Data
21
+
22
+ The model was fine-tuned on the [agentlans/readability](https://huggingface.co/datasets/agentlans/readability) dataset
23
+ containing paragraphs from four sources.
24
+
25
+ 1. HuggingFace's Fineweb-Edu
26
+ 2. Ronen Eldan's TinyStories
27
+ 3. Wikipedia-2023-11-embed-multilingual-v3 (English only)
28
+ 4. ArXiv Abstracts-2021
29
+
30
+ Each paragraph was annotated with 6 readability metrics that estimate U.S. grade level reading comprehension.
31
+
32
+ ## How to use
33
+
34
+ ```python
35
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
36
+ import torch
37
+
38
+ model_name="agentlans/deberta-v3-xsmall-readability"
39
+
40
+ # Put model on GPU or else CPU
41
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
42
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
43
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
44
+ model = model.to(device)
45
+
46
+ def readability(text):
47
+ """Processes the text using the model and returns its logits.
48
+ In this case, it's reading grade level in years of education
49
+ (the higher the number, the harder it is to read the text)."""
50
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device)
51
+ with torch.no_grad():
52
+ logits = model(**inputs).logits.squeeze().cpu()
53
+ return logits.tolist()
54
+
55
+ # Example usage
56
+ text = ["One day, Tim's teddy bear was sad. Tim did not know why his teddy bear was sad.",
57
+ "A few years back, I decided it was time for me to take a break from my mundane routine and embark on an adventure.",
58
+ "We also experimentally verify that simply scaling the pulse energy by 3/2 between linearly and circularly polarized pumping closely reproduces the soliton and dispersive wave dynamics."]
59
+ result = readability(text)
60
+ result
61
+ ```
62
+
63
+ <details>
64
+ <summary>Performance metrics and training details</summary>
65
+
66
+ ## Performance Metrics
67
+
68
+ On the evaluation set:
69
+ - **Loss**: 1.0767
70
+ - **Mean Squared Error (MSE)**: 1.0767
71
+
72
+ ## Training Procedure
73
+
74
+ ### Hyperparameters
75
+
76
+ - Learning Rate: 5e-05
77
+ - Train Batch Size: 8
78
+ - Eval Batch Size: 8
79
+ - Seed: 42
80
+ - Optimizer: Adam (betas=(0.9, 0.999), epsilon=1e-08)
81
+ - Learning Rate Scheduler: Linear
82
+ - Number of Epochs: 3.0
83
+
84
+ ### Framework Versions
85
+
86
+ - Transformers: 4.44.2
87
+ - PyTorch: 2.2.2+cu121
88
+ - Datasets: 2.18.0
89
+ - Tokenizers: 0.19.1
90
+
91
+ </details>
92
+
93
+ ## Limitations
94
+
95
+ - English only
96
+ - Performance may vary for very long or very short texts
97
+ - This model is for general texts so it's not optimized for specific uses like children's books or medical texts
98
+ - Doesn't assess whether the texts make sense for the reader
99
+ - There's a lot of variability in the readability metrics in the literature
100
+
101
+ ## Ethical Considerations
102
+
103
+ - The model should not be the sole determinant for content suitability decisions
104
+ - The writer or publisher should also consider the content, context, and reader expectations
105
+ - Potential social or societal biases due to the training data sources
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "[MASK]": 128000
3
+ }
all_results.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "eval_loss": 1.0766587257385254,
4
+ "eval_mse": 1.0766586492747146,
5
+ "eval_runtime": 12.0864,
6
+ "eval_samples": 13095,
7
+ "eval_samples_per_second": 1083.449,
8
+ "eval_steps_per_second": 135.441,
9
+ "total_flos": 5175762253906176.0,
10
+ "train_loss": 1.154250169620813,
11
+ "train_runtime": 1582.2568,
12
+ "train_samples": 104761,
13
+ "train_samples_per_second": 198.63,
14
+ "train_steps_per_second": 24.83
15
+ }
config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "deberta-v3-xsmall-readability-pretrain",
3
+ "architectures": [
4
+ "DebertaV2ForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "finetuning_task": "text-classification",
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-07,
20
+ "max_position_embeddings": 512,
21
+ "max_relative_positions": -1,
22
+ "model_type": "deberta-v2",
23
+ "norm_rel_ebd": "layer_norm",
24
+ "num_attention_heads": 6,
25
+ "num_hidden_layers": 12,
26
+ "pad_token_id": 0,
27
+ "pooler_dropout": 0,
28
+ "pooler_hidden_act": "gelu",
29
+ "pooler_hidden_size": 384,
30
+ "pos_att_type": [
31
+ "p2c",
32
+ "c2p"
33
+ ],
34
+ "position_biased_input": false,
35
+ "position_buckets": 256,
36
+ "problem_type": "regression",
37
+ "relative_attention": true,
38
+ "share_att_key": true,
39
+ "torch_dtype": "float32",
40
+ "transformers_version": "4.44.2",
41
+ "type_vocab_size": 0,
42
+ "vocab_size": 128100
43
+ }
eval_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "eval_loss": 1.0766587257385254,
4
+ "eval_mse": 1.0766586492747146,
5
+ "eval_runtime": 12.0864,
6
+ "eval_samples": 13095,
7
+ "eval_samples_per_second": 1083.449,
8
+ "eval_steps_per_second": 135.441
9
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6499242960a2bb457e53c9f11026609f446e20d78de62eb63d05dcd6dd0c76f
3
+ size 283345892
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c679fbf93643d19aab7ee10c0b99e460bdbc02fedf34b92b05af343b4af586fd
3
+ size 2464616
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[CLS]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128000": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "[CLS]",
47
+ "do_lower_case": false,
48
+ "eos_token": "[SEP]",
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 1000000000000000019884624838656,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "sp_model_kwargs": {},
54
+ "split_by_punct": false,
55
+ "tokenizer_class": "DebertaV2Tokenizer",
56
+ "unk_token": "[UNK]",
57
+ "vocab_type": "spm"
58
+ }
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "total_flos": 5175762253906176.0,
4
+ "train_loss": 1.154250169620813,
5
+ "train_runtime": 1582.2568,
6
+ "train_samples": 104761,
7
+ "train_samples_per_second": 198.63,
8
+ "train_steps_per_second": 24.83
9
+ }
trainer_state.json ADDED
@@ -0,0 +1,588 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 3.0,
5
+ "eval_steps": 500,
6
+ "global_step": 39288,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.03817959682345754,
13
+ "grad_norm": 47.025718688964844,
14
+ "learning_rate": 4.936367338627571e-05,
15
+ "loss": 19.8956,
16
+ "step": 500
17
+ },
18
+ {
19
+ "epoch": 0.07635919364691508,
20
+ "grad_norm": 39.02047348022461,
21
+ "learning_rate": 4.872734677255142e-05,
22
+ "loss": 2.0594,
23
+ "step": 1000
24
+ },
25
+ {
26
+ "epoch": 0.11453879047037263,
27
+ "grad_norm": 82.10893249511719,
28
+ "learning_rate": 4.8091020158827126e-05,
29
+ "loss": 1.924,
30
+ "step": 1500
31
+ },
32
+ {
33
+ "epoch": 0.15271838729383017,
34
+ "grad_norm": 25.970558166503906,
35
+ "learning_rate": 4.7454693545102835e-05,
36
+ "loss": 1.6354,
37
+ "step": 2000
38
+ },
39
+ {
40
+ "epoch": 0.19089798411728773,
41
+ "grad_norm": 46.208919525146484,
42
+ "learning_rate": 4.6818366931378536e-05,
43
+ "loss": 1.5016,
44
+ "step": 2500
45
+ },
46
+ {
47
+ "epoch": 0.22907758094074526,
48
+ "grad_norm": 35.68703842163086,
49
+ "learning_rate": 4.6182040317654244e-05,
50
+ "loss": 1.5022,
51
+ "step": 3000
52
+ },
53
+ {
54
+ "epoch": 0.2672571777642028,
55
+ "grad_norm": 65.33502960205078,
56
+ "learning_rate": 4.554571370392995e-05,
57
+ "loss": 1.423,
58
+ "step": 3500
59
+ },
60
+ {
61
+ "epoch": 0.30543677458766033,
62
+ "grad_norm": 33.0444450378418,
63
+ "learning_rate": 4.490938709020566e-05,
64
+ "loss": 1.3971,
65
+ "step": 4000
66
+ },
67
+ {
68
+ "epoch": 0.3436163714111179,
69
+ "grad_norm": 18.407243728637695,
70
+ "learning_rate": 4.427306047648137e-05,
71
+ "loss": 1.308,
72
+ "step": 4500
73
+ },
74
+ {
75
+ "epoch": 0.38179596823457546,
76
+ "grad_norm": 62.20368194580078,
77
+ "learning_rate": 4.3636733862757076e-05,
78
+ "loss": 1.3365,
79
+ "step": 5000
80
+ },
81
+ {
82
+ "epoch": 0.41997556505803296,
83
+ "grad_norm": 18.440366744995117,
84
+ "learning_rate": 4.3000407249032784e-05,
85
+ "loss": 1.1873,
86
+ "step": 5500
87
+ },
88
+ {
89
+ "epoch": 0.4581551618814905,
90
+ "grad_norm": 21.170751571655273,
91
+ "learning_rate": 4.236408063530849e-05,
92
+ "loss": 1.212,
93
+ "step": 6000
94
+ },
95
+ {
96
+ "epoch": 0.4963347587049481,
97
+ "grad_norm": 38.78303146362305,
98
+ "learning_rate": 4.17277540215842e-05,
99
+ "loss": 1.2951,
100
+ "step": 6500
101
+ },
102
+ {
103
+ "epoch": 0.5345143555284056,
104
+ "grad_norm": 15.414962768554688,
105
+ "learning_rate": 4.109142740785991e-05,
106
+ "loss": 1.2291,
107
+ "step": 7000
108
+ },
109
+ {
110
+ "epoch": 0.5726939523518632,
111
+ "grad_norm": 17.313640594482422,
112
+ "learning_rate": 4.0455100794135616e-05,
113
+ "loss": 1.1234,
114
+ "step": 7500
115
+ },
116
+ {
117
+ "epoch": 0.6108735491753207,
118
+ "grad_norm": 24.39589500427246,
119
+ "learning_rate": 3.9818774180411324e-05,
120
+ "loss": 1.2496,
121
+ "step": 8000
122
+ },
123
+ {
124
+ "epoch": 0.6490531459987783,
125
+ "grad_norm": 29.411834716796875,
126
+ "learning_rate": 3.918244756668703e-05,
127
+ "loss": 1.1647,
128
+ "step": 8500
129
+ },
130
+ {
131
+ "epoch": 0.6872327428222358,
132
+ "grad_norm": 24.564817428588867,
133
+ "learning_rate": 3.854612095296274e-05,
134
+ "loss": 1.1065,
135
+ "step": 9000
136
+ },
137
+ {
138
+ "epoch": 0.7254123396456933,
139
+ "grad_norm": 48.59101104736328,
140
+ "learning_rate": 3.790979433923845e-05,
141
+ "loss": 1.1279,
142
+ "step": 9500
143
+ },
144
+ {
145
+ "epoch": 0.7635919364691509,
146
+ "grad_norm": 37.30824661254883,
147
+ "learning_rate": 3.7273467725514156e-05,
148
+ "loss": 1.0621,
149
+ "step": 10000
150
+ },
151
+ {
152
+ "epoch": 0.8017715332926084,
153
+ "grad_norm": 40.20986557006836,
154
+ "learning_rate": 3.6637141111789864e-05,
155
+ "loss": 1.1039,
156
+ "step": 10500
157
+ },
158
+ {
159
+ "epoch": 0.8399511301160659,
160
+ "grad_norm": 7.365723609924316,
161
+ "learning_rate": 3.600081449806557e-05,
162
+ "loss": 1.0561,
163
+ "step": 11000
164
+ },
165
+ {
166
+ "epoch": 0.8781307269395235,
167
+ "grad_norm": 10.872908592224121,
168
+ "learning_rate": 3.5364487884341273e-05,
169
+ "loss": 1.0061,
170
+ "step": 11500
171
+ },
172
+ {
173
+ "epoch": 0.916310323762981,
174
+ "grad_norm": 37.47850799560547,
175
+ "learning_rate": 3.472816127061698e-05,
176
+ "loss": 1.1034,
177
+ "step": 12000
178
+ },
179
+ {
180
+ "epoch": 0.9544899205864386,
181
+ "grad_norm": 59.97223663330078,
182
+ "learning_rate": 3.409183465689269e-05,
183
+ "loss": 1.058,
184
+ "step": 12500
185
+ },
186
+ {
187
+ "epoch": 0.9926695174098962,
188
+ "grad_norm": 17.347299575805664,
189
+ "learning_rate": 3.34555080431684e-05,
190
+ "loss": 0.9714,
191
+ "step": 13000
192
+ },
193
+ {
194
+ "epoch": 1.0308491142333538,
195
+ "grad_norm": 47.64847183227539,
196
+ "learning_rate": 3.2819181429444106e-05,
197
+ "loss": 0.9232,
198
+ "step": 13500
199
+ },
200
+ {
201
+ "epoch": 1.0690287110568113,
202
+ "grad_norm": 23.9332332611084,
203
+ "learning_rate": 3.2182854815719814e-05,
204
+ "loss": 0.8723,
205
+ "step": 14000
206
+ },
207
+ {
208
+ "epoch": 1.1072083078802688,
209
+ "grad_norm": 24.243032455444336,
210
+ "learning_rate": 3.154652820199552e-05,
211
+ "loss": 0.9376,
212
+ "step": 14500
213
+ },
214
+ {
215
+ "epoch": 1.1453879047037263,
216
+ "grad_norm": 18.394193649291992,
217
+ "learning_rate": 3.091020158827123e-05,
218
+ "loss": 0.9212,
219
+ "step": 15000
220
+ },
221
+ {
222
+ "epoch": 1.1835675015271838,
223
+ "grad_norm": 33.30715560913086,
224
+ "learning_rate": 3.027387497454694e-05,
225
+ "loss": 0.9196,
226
+ "step": 15500
227
+ },
228
+ {
229
+ "epoch": 1.2217470983506413,
230
+ "grad_norm": 116.27849578857422,
231
+ "learning_rate": 2.9637548360822642e-05,
232
+ "loss": 0.8325,
233
+ "step": 16000
234
+ },
235
+ {
236
+ "epoch": 1.2599266951740988,
237
+ "grad_norm": 33.555179595947266,
238
+ "learning_rate": 2.900122174709835e-05,
239
+ "loss": 0.8746,
240
+ "step": 16500
241
+ },
242
+ {
243
+ "epoch": 1.2981062919975566,
244
+ "grad_norm": 35.980411529541016,
245
+ "learning_rate": 2.836489513337406e-05,
246
+ "loss": 0.8561,
247
+ "step": 17000
248
+ },
249
+ {
250
+ "epoch": 1.336285888821014,
251
+ "grad_norm": 42.04365921020508,
252
+ "learning_rate": 2.7728568519649766e-05,
253
+ "loss": 0.867,
254
+ "step": 17500
255
+ },
256
+ {
257
+ "epoch": 1.3744654856444716,
258
+ "grad_norm": 43.86580276489258,
259
+ "learning_rate": 2.7092241905925474e-05,
260
+ "loss": 0.8331,
261
+ "step": 18000
262
+ },
263
+ {
264
+ "epoch": 1.412645082467929,
265
+ "grad_norm": 44.562686920166016,
266
+ "learning_rate": 2.6455915292201182e-05,
267
+ "loss": 0.8354,
268
+ "step": 18500
269
+ },
270
+ {
271
+ "epoch": 1.4508246792913866,
272
+ "grad_norm": 15.569896697998047,
273
+ "learning_rate": 2.581958867847689e-05,
274
+ "loss": 0.8514,
275
+ "step": 19000
276
+ },
277
+ {
278
+ "epoch": 1.4890042761148443,
279
+ "grad_norm": 58.31094741821289,
280
+ "learning_rate": 2.51832620647526e-05,
281
+ "loss": 0.8712,
282
+ "step": 19500
283
+ },
284
+ {
285
+ "epoch": 1.5271838729383018,
286
+ "grad_norm": 15.770406723022461,
287
+ "learning_rate": 2.4546935451028307e-05,
288
+ "loss": 0.8085,
289
+ "step": 20000
290
+ },
291
+ {
292
+ "epoch": 1.5653634697617593,
293
+ "grad_norm": 29.918487548828125,
294
+ "learning_rate": 2.3910608837304015e-05,
295
+ "loss": 0.7545,
296
+ "step": 20500
297
+ },
298
+ {
299
+ "epoch": 1.6035430665852168,
300
+ "grad_norm": 112.88292694091797,
301
+ "learning_rate": 2.3274282223579723e-05,
302
+ "loss": 0.8347,
303
+ "step": 21000
304
+ },
305
+ {
306
+ "epoch": 1.6417226634086743,
307
+ "grad_norm": 16.153079986572266,
308
+ "learning_rate": 2.2637955609855427e-05,
309
+ "loss": 0.8042,
310
+ "step": 21500
311
+ },
312
+ {
313
+ "epoch": 1.679902260232132,
314
+ "grad_norm": 17.334716796875,
315
+ "learning_rate": 2.2001628996131135e-05,
316
+ "loss": 0.8368,
317
+ "step": 22000
318
+ },
319
+ {
320
+ "epoch": 1.7180818570555894,
321
+ "grad_norm": 22.649688720703125,
322
+ "learning_rate": 2.1365302382406843e-05,
323
+ "loss": 0.7438,
324
+ "step": 22500
325
+ },
326
+ {
327
+ "epoch": 1.756261453879047,
328
+ "grad_norm": 23.706069946289062,
329
+ "learning_rate": 2.072897576868255e-05,
330
+ "loss": 0.8163,
331
+ "step": 23000
332
+ },
333
+ {
334
+ "epoch": 1.7944410507025046,
335
+ "grad_norm": 60.12598419189453,
336
+ "learning_rate": 2.0092649154958256e-05,
337
+ "loss": 0.8018,
338
+ "step": 23500
339
+ },
340
+ {
341
+ "epoch": 1.832620647525962,
342
+ "grad_norm": 88.19845581054688,
343
+ "learning_rate": 1.9456322541233964e-05,
344
+ "loss": 0.7776,
345
+ "step": 24000
346
+ },
347
+ {
348
+ "epoch": 1.8708002443494198,
349
+ "grad_norm": 18.326126098632812,
350
+ "learning_rate": 1.8819995927509672e-05,
351
+ "loss": 0.7694,
352
+ "step": 24500
353
+ },
354
+ {
355
+ "epoch": 1.9089798411728771,
356
+ "grad_norm": 33.15532684326172,
357
+ "learning_rate": 1.818366931378538e-05,
358
+ "loss": 0.7517,
359
+ "step": 25000
360
+ },
361
+ {
362
+ "epoch": 1.9471594379963348,
363
+ "grad_norm": 11.88496208190918,
364
+ "learning_rate": 1.7547342700061088e-05,
365
+ "loss": 0.7802,
366
+ "step": 25500
367
+ },
368
+ {
369
+ "epoch": 1.9853390348197923,
370
+ "grad_norm": 53.72198486328125,
371
+ "learning_rate": 1.6911016086336796e-05,
372
+ "loss": 0.7699,
373
+ "step": 26000
374
+ },
375
+ {
376
+ "epoch": 2.02351863164325,
377
+ "grad_norm": 13.519152641296387,
378
+ "learning_rate": 1.6274689472612504e-05,
379
+ "loss": 0.7362,
380
+ "step": 26500
381
+ },
382
+ {
383
+ "epoch": 2.0616982284667076,
384
+ "grad_norm": 21.352752685546875,
385
+ "learning_rate": 1.5638362858888212e-05,
386
+ "loss": 0.7043,
387
+ "step": 27000
388
+ },
389
+ {
390
+ "epoch": 2.099877825290165,
391
+ "grad_norm": 39.630210876464844,
392
+ "learning_rate": 1.500203624516392e-05,
393
+ "loss": 0.6899,
394
+ "step": 27500
395
+ },
396
+ {
397
+ "epoch": 2.1380574221136226,
398
+ "grad_norm": 15.605965614318848,
399
+ "learning_rate": 1.4365709631439625e-05,
400
+ "loss": 0.7241,
401
+ "step": 28000
402
+ },
403
+ {
404
+ "epoch": 2.17623701893708,
405
+ "grad_norm": 12.23674201965332,
406
+ "learning_rate": 1.3729383017715333e-05,
407
+ "loss": 0.6201,
408
+ "step": 28500
409
+ },
410
+ {
411
+ "epoch": 2.2144166157605376,
412
+ "grad_norm": 15.482099533081055,
413
+ "learning_rate": 1.309305640399104e-05,
414
+ "loss": 0.6966,
415
+ "step": 29000
416
+ },
417
+ {
418
+ "epoch": 2.2525962125839953,
419
+ "grad_norm": 25.2972469329834,
420
+ "learning_rate": 1.2456729790266749e-05,
421
+ "loss": 0.5878,
422
+ "step": 29500
423
+ },
424
+ {
425
+ "epoch": 2.2907758094074526,
426
+ "grad_norm": 18.335323333740234,
427
+ "learning_rate": 1.1820403176542457e-05,
428
+ "loss": 0.6468,
429
+ "step": 30000
430
+ },
431
+ {
432
+ "epoch": 2.3289554062309104,
433
+ "grad_norm": 44.75697326660156,
434
+ "learning_rate": 1.1184076562818163e-05,
435
+ "loss": 0.6888,
436
+ "step": 30500
437
+ },
438
+ {
439
+ "epoch": 2.3671350030543676,
440
+ "grad_norm": 9.713996887207031,
441
+ "learning_rate": 1.0547749949093871e-05,
442
+ "loss": 0.6584,
443
+ "step": 31000
444
+ },
445
+ {
446
+ "epoch": 2.4053145998778254,
447
+ "grad_norm": 19.04861831665039,
448
+ "learning_rate": 9.91142333536958e-06,
449
+ "loss": 0.6356,
450
+ "step": 31500
451
+ },
452
+ {
453
+ "epoch": 2.4434941967012827,
454
+ "grad_norm": 16.914947509765625,
455
+ "learning_rate": 9.275096721645286e-06,
456
+ "loss": 0.6188,
457
+ "step": 32000
458
+ },
459
+ {
460
+ "epoch": 2.4816737935247404,
461
+ "grad_norm": 25.262630462646484,
462
+ "learning_rate": 8.638770107920995e-06,
463
+ "loss": 0.6062,
464
+ "step": 32500
465
+ },
466
+ {
467
+ "epoch": 2.5198533903481977,
468
+ "grad_norm": 49.74958419799805,
469
+ "learning_rate": 8.002443494196702e-06,
470
+ "loss": 0.6554,
471
+ "step": 33000
472
+ },
473
+ {
474
+ "epoch": 2.5580329871716554,
475
+ "grad_norm": 35.74587631225586,
476
+ "learning_rate": 7.36611688047241e-06,
477
+ "loss": 0.6523,
478
+ "step": 33500
479
+ },
480
+ {
481
+ "epoch": 2.596212583995113,
482
+ "grad_norm": 22.55206298828125,
483
+ "learning_rate": 6.729790266748116e-06,
484
+ "loss": 0.6333,
485
+ "step": 34000
486
+ },
487
+ {
488
+ "epoch": 2.6343921808185704,
489
+ "grad_norm": 19.39708709716797,
490
+ "learning_rate": 6.093463653023825e-06,
491
+ "loss": 0.6269,
492
+ "step": 34500
493
+ },
494
+ {
495
+ "epoch": 2.672571777642028,
496
+ "grad_norm": 65.50653839111328,
497
+ "learning_rate": 5.457137039299532e-06,
498
+ "loss": 0.6825,
499
+ "step": 35000
500
+ },
501
+ {
502
+ "epoch": 2.7107513744654854,
503
+ "grad_norm": 10.603687286376953,
504
+ "learning_rate": 4.820810425575239e-06,
505
+ "loss": 0.6289,
506
+ "step": 35500
507
+ },
508
+ {
509
+ "epoch": 2.748930971288943,
510
+ "grad_norm": 12.743573188781738,
511
+ "learning_rate": 4.184483811850947e-06,
512
+ "loss": 0.6369,
513
+ "step": 36000
514
+ },
515
+ {
516
+ "epoch": 2.787110568112401,
517
+ "grad_norm": 8.957477569580078,
518
+ "learning_rate": 3.5481571981266544e-06,
519
+ "loss": 0.6095,
520
+ "step": 36500
521
+ },
522
+ {
523
+ "epoch": 2.825290164935858,
524
+ "grad_norm": 38.0220947265625,
525
+ "learning_rate": 2.911830584402362e-06,
526
+ "loss": 0.5497,
527
+ "step": 37000
528
+ },
529
+ {
530
+ "epoch": 2.863469761759316,
531
+ "grad_norm": 25.39042854309082,
532
+ "learning_rate": 2.27550397067807e-06,
533
+ "loss": 0.5781,
534
+ "step": 37500
535
+ },
536
+ {
537
+ "epoch": 2.901649358582773,
538
+ "grad_norm": 11.314273834228516,
539
+ "learning_rate": 1.6391773569537775e-06,
540
+ "loss": 0.6227,
541
+ "step": 38000
542
+ },
543
+ {
544
+ "epoch": 2.939828955406231,
545
+ "grad_norm": 38.86436080932617,
546
+ "learning_rate": 1.0028507432294848e-06,
547
+ "loss": 0.5966,
548
+ "step": 38500
549
+ },
550
+ {
551
+ "epoch": 2.9780085522296886,
552
+ "grad_norm": 11.880073547363281,
553
+ "learning_rate": 3.6652412950519244e-07,
554
+ "loss": 0.5901,
555
+ "step": 39000
556
+ },
557
+ {
558
+ "epoch": 3.0,
559
+ "step": 39288,
560
+ "total_flos": 5175762253906176.0,
561
+ "train_loss": 1.154250169620813,
562
+ "train_runtime": 1582.2568,
563
+ "train_samples_per_second": 198.63,
564
+ "train_steps_per_second": 24.83
565
+ }
566
+ ],
567
+ "logging_steps": 500,
568
+ "max_steps": 39288,
569
+ "num_input_tokens_seen": 0,
570
+ "num_train_epochs": 3,
571
+ "save_steps": 500,
572
+ "stateful_callbacks": {
573
+ "TrainerControl": {
574
+ "args": {
575
+ "should_epoch_stop": false,
576
+ "should_evaluate": false,
577
+ "should_log": false,
578
+ "should_save": true,
579
+ "should_training_stop": true
580
+ },
581
+ "attributes": {}
582
+ }
583
+ },
584
+ "total_flos": 5175762253906176.0,
585
+ "train_batch_size": 8,
586
+ "trial_name": null,
587
+ "trial_params": null
588
+ }