jackhogan commited on
Commit
442a572
·
verified ·
1 Parent(s): 63b708e

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. added_tokens.json +25 -0
  2. checkpoint-1000/added_tokens.json +25 -0
  3. checkpoint-1000/config.json +55 -0
  4. checkpoint-1000/generation_config.json +6 -0
  5. checkpoint-1000/global_step1000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  6. checkpoint-1000/global_step1000/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  7. checkpoint-1000/global_step1000/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  8. checkpoint-1000/global_step1000/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  9. checkpoint-1000/global_step1000/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
  10. checkpoint-1000/global_step1000/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
  11. checkpoint-1000/global_step1000/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
  12. checkpoint-1000/global_step1000/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
  13. checkpoint-1000/global_step1000/mp_rank_00_model_states.pt +3 -0
  14. checkpoint-1000/latest +1 -0
  15. checkpoint-1000/merges.txt +0 -0
  16. checkpoint-1000/model-00001-of-00004.safetensors +3 -0
  17. checkpoint-1000/model-00002-of-00004.safetensors +3 -0
  18. checkpoint-1000/model-00003-of-00004.safetensors +3 -0
  19. checkpoint-1000/model-00004-of-00004.safetensors +3 -0
  20. checkpoint-1000/model.safetensors.index.json +796 -0
  21. checkpoint-1000/rng_state_0.pth +3 -0
  22. checkpoint-1000/rng_state_1.pth +3 -0
  23. checkpoint-1000/rng_state_2.pth +3 -0
  24. checkpoint-1000/rng_state_3.pth +3 -0
  25. checkpoint-1000/rng_state_4.pth +3 -0
  26. checkpoint-1000/rng_state_5.pth +3 -0
  27. checkpoint-1000/rng_state_6.pth +3 -0
  28. checkpoint-1000/rng_state_7.pth +3 -0
  29. checkpoint-1000/special_tokens_map.json +52 -0
  30. checkpoint-1000/tokenizer.json +0 -0
  31. checkpoint-1000/tokenizer_config.json +235 -0
  32. checkpoint-1000/trainer_state.json +0 -0
  33. checkpoint-1000/training_args.bin +3 -0
  34. checkpoint-1000/vocab.json +0 -0
  35. checkpoint-1000/zero_to_fp32.py +604 -0
  36. checkpoint-1200/added_tokens.json +25 -0
  37. checkpoint-1200/config.json +54 -0
  38. checkpoint-1200/configuration_minicpm.py +100 -0
  39. checkpoint-1200/generation_config.json +6 -0
  40. checkpoint-1200/global_step1200/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  41. checkpoint-1200/global_step1200/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  42. checkpoint-1200/global_step1200/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  43. checkpoint-1200/global_step1200/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  44. checkpoint-1200/global_step1200/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
  45. checkpoint-1200/global_step1200/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
  46. checkpoint-1200/global_step1200/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
  47. checkpoint-1200/global_step1200/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
  48. checkpoint-1200/global_step1200/mp_rank_00_model_states.pt +3 -0
  49. checkpoint-1200/image_processing_minicpmv.py +418 -0
  50. checkpoint-1200/latest +1 -0
added_tokens.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</box>": 151651,
3
+ "</image>": 151647,
4
+ "</image_id>": 151659,
5
+ "</point>": 151655,
6
+ "</quad>": 151653,
7
+ "</ref>": 151649,
8
+ "</slice>": 151657,
9
+ "<box>": 151650,
10
+ "<image>": 151646,
11
+ "<image_id>": 151658,
12
+ "<point>": 151654,
13
+ "<quad>": 151652,
14
+ "<ref>": 151648,
15
+ "<slice>": 151656,
16
+ "<|endoftext|>": 151643,
17
+ "<|im_end|>": 151645,
18
+ "<|im_start|>": 151644,
19
+ "<|reserved_special_token_0|>": 151660,
20
+ "<|reserved_special_token_1|>": 151661,
21
+ "<|reserved_special_token_2|>": 151662,
22
+ "<|reserved_special_token_3|>": 151663,
23
+ "<|reserved_special_token_4|>": 151664,
24
+ "<|reserved_special_token_5|>": 151665
25
+ }
checkpoint-1000/added_tokens.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</box>": 151651,
3
+ "</image>": 151647,
4
+ "</image_id>": 151659,
5
+ "</point>": 151655,
6
+ "</quad>": 151653,
7
+ "</ref>": 151649,
8
+ "</slice>": 151657,
9
+ "<box>": 151650,
10
+ "<image>": 151646,
11
+ "<image_id>": 151658,
12
+ "<point>": 151654,
13
+ "<quad>": 151652,
14
+ "<ref>": 151648,
15
+ "<slice>": 151656,
16
+ "<|endoftext|>": 151643,
17
+ "<|im_end|>": 151645,
18
+ "<|im_start|>": 151644,
19
+ "<|reserved_special_token_0|>": 151660,
20
+ "<|reserved_special_token_1|>": 151661,
21
+ "<|reserved_special_token_2|>": 151662,
22
+ "<|reserved_special_token_3|>": 151663,
23
+ "<|reserved_special_token_4|>": 151664,
24
+ "<|reserved_special_token_5|>": 151665
25
+ }
checkpoint-1000/config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "openbmb/MiniCPM-V-2_6",
3
+ "architectures": [
4
+ "MiniCPMV"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "openbmb/MiniCPM-V-2_6--configuration_minicpm.MiniCPMVConfig",
9
+ "AutoModel": "openbmb/MiniCPM-V-2_6--modeling_minicpmv.MiniCPMV",
10
+ "AutoModelForCausalLM": "openbmb/MiniCPM-V-2_6--modeling_minicpmv.MiniCPMV"
11
+ },
12
+ "batch_vision_input": true,
13
+ "bos_token_id": 151643,
14
+ "drop_vision_last_layer": false,
15
+ "eos_token_id": 151645,
16
+ "hidden_act": "silu",
17
+ "hidden_size": 3584,
18
+ "image_size": 448,
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 18944,
21
+ "max_position_embeddings": 32768,
22
+ "max_window_layers": 28,
23
+ "model_type": "minicpmv",
24
+ "num_attention_heads": 28,
25
+ "num_hidden_layers": 28,
26
+ "num_key_value_heads": 4,
27
+ "patch_size": 14,
28
+ "query_num": 64,
29
+ "rms_norm_eps": 1e-06,
30
+ "rope_theta": 1000000.0,
31
+ "slice_config": {
32
+ "max_slice_nums": 9,
33
+ "model_type": "minicpmv"
34
+ },
35
+ "slice_mode": true,
36
+ "sliding_window": 131072,
37
+ "tie_word_embeddings": false,
38
+ "torch_dtype": "bfloat16",
39
+ "transformers_version": "4.40.0",
40
+ "use_cache": true,
41
+ "use_image_id": true,
42
+ "use_sliding_window": false,
43
+ "version": 2.6,
44
+ "vision_batch_size": 16,
45
+ "vision_config": {
46
+ "hidden_size": 1152,
47
+ "image_size": 980,
48
+ "intermediate_size": 4304,
49
+ "model_type": "siglip_vision_model",
50
+ "num_attention_heads": 16,
51
+ "num_hidden_layers": 27,
52
+ "patch_size": 14
53
+ },
54
+ "vocab_size": 151666
55
+ }
checkpoint-1000/generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 151643,
4
+ "eos_token_id": 151645,
5
+ "transformers_version": "4.40.0"
6
+ }
checkpoint-1000/global_step1000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a05beafbedc18d6b85dc10e983eaa02ff5a95b6e06d69f930a343744a635669c
3
+ size 12148768700
checkpoint-1000/global_step1000/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3aed64b5e795a3b82a1262c999d8e01229775991baaf33d1ddcea135d5533f1
3
+ size 12148771068
checkpoint-1000/global_step1000/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:539596304224e21967d3a4f6c3cead4a33cafec8ae3fc6fcfde4e1298ad7b813
3
+ size 12148770556
checkpoint-1000/global_step1000/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:042f4c96d676065af59f7fd9064006a4680aac41127bce0dc3c7e7625fc6818d
3
+ size 12148770876
checkpoint-1000/global_step1000/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:73efaf19b4aeef73e08153108a3fde64fc77c332f6821f37276683ec2b0f645b
3
+ size 12148771132
checkpoint-1000/global_step1000/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a3c5ecad30e2efda1da6c1349cb5c8ea77d280e04360a5a0495e55f5bd12503
3
+ size 12148770684
checkpoint-1000/global_step1000/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76ca42b0767a816de5751247d10e3603fdd934732791cec6745e138cb3868a1b
3
+ size 12148770812
checkpoint-1000/global_step1000/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9cf7e6b673f20771a13191b28b3f4d28d854c9011aecbe64aad8cafaa344a78
3
+ size 12148802748
checkpoint-1000/global_step1000/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49e6f848fddeb9ec64d452461413f895099de0397da98b2ca799387499f347f5
3
+ size 16198565472
checkpoint-1000/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step1000
checkpoint-1000/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1000/model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d91a813f1cc0d8c72e57baeac81df7c6f60fcb86f2f4cef3cbc8edaa818a122d
3
+ size 4874808328
checkpoint-1000/model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9fcee218f4ac6869e0a05a9fa8055ea6ecb7232412b2d83ce78afb69d71f9b9
3
+ size 4932751496
checkpoint-1000/model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6383381dd1aeebe4dfc634ef15301277ebdad521e409d8b3ec84e7eda5baf777
3
+ size 4330865648
checkpoint-1000/model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef4bacb5b2e48b14e22eba134d713768b6a95e6f78a03158256e26cea1705a0b
3
+ size 2060017080
checkpoint-1000/model.safetensors.index.json ADDED
@@ -0,0 +1,796 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16198350304
4
+ },
5
+ "weight_map": {
6
+ "llm.lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "llm.model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "llm.model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "llm.model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "llm.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "llm.model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "llm.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "llm.model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "llm.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "llm.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "llm.model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "llm.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "llm.model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "llm.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "llm.model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "llm.model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "llm.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "llm.model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "llm.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "llm.model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "llm.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "llm.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "llm.model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "llm.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "llm.model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "llm.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "llm.model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "llm.model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "llm.model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "llm.model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "llm.model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "llm.model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "llm.model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "llm.model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "llm.model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "llm.model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "llm.model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "llm.model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "llm.model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "llm.model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "llm.model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "llm.model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "llm.model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "llm.model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "llm.model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "llm.model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "llm.model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "llm.model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "llm.model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "llm.model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "llm.model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "llm.model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "llm.model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "llm.model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "llm.model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "llm.model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "llm.model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "llm.model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "llm.model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "llm.model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "llm.model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "llm.model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "llm.model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "llm.model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "llm.model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "llm.model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "llm.model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "llm.model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "llm.model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "llm.model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "llm.model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "llm.model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "llm.model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "llm.model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "llm.model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "llm.model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "llm.model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "llm.model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "llm.model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "llm.model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "llm.model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "llm.model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "llm.model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "llm.model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "llm.model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "llm.model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "llm.model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "llm.model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "llm.model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "llm.model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "llm.model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "llm.model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "llm.model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "llm.model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "llm.model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "llm.model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "llm.model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "llm.model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "llm.model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "llm.model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "llm.model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "llm.model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "llm.model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "llm.model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "llm.model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "llm.model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "llm.model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "llm.model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "llm.model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "llm.model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "llm.model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
117
+ "llm.model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
118
+ "llm.model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "llm.model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "llm.model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
121
+ "llm.model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "llm.model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "llm.model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "llm.model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "llm.model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "llm.model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "llm.model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "llm.model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "llm.model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "llm.model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
131
+ "llm.model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
132
+ "llm.model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "llm.model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
134
+ "llm.model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
135
+ "llm.model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
136
+ "llm.model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
137
+ "llm.model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
138
+ "llm.model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
139
+ "llm.model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
140
+ "llm.model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "llm.model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "llm.model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "llm.model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "llm.model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "llm.model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "llm.model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "llm.model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "llm.model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "llm.model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "llm.model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "llm.model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "llm.model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "llm.model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "llm.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "llm.model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "llm.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "llm.model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "llm.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "llm.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "llm.model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "llm.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "llm.model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "llm.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "llm.model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "llm.model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "llm.model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "llm.model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "llm.model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "llm.model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "llm.model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "llm.model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "llm.model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "llm.model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "llm.model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "llm.model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "llm.model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "llm.model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "llm.model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "llm.model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "llm.model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "llm.model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "llm.model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "llm.model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "llm.model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "llm.model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "llm.model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "llm.model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "llm.model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "llm.model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "llm.model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "llm.model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "llm.model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "llm.model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "llm.model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "llm.model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "llm.model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "llm.model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "llm.model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "llm.model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "llm.model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "llm.model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "llm.model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "llm.model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "llm.model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "llm.model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "llm.model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "llm.model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "llm.model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "llm.model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "llm.model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "llm.model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "llm.model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "llm.model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "llm.model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "llm.model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "llm.model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "llm.model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "llm.model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "llm.model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "llm.model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "llm.model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "llm.model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "llm.model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "llm.model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "llm.model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "llm.model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "llm.model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "llm.model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "llm.model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "llm.model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "llm.model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "llm.model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "llm.model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "llm.model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "llm.model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "llm.model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "llm.model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "llm.model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "llm.model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "llm.model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "llm.model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "llm.model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "llm.model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "llm.model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "llm.model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "llm.model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "llm.model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "llm.model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
249
+ "llm.model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
250
+ "llm.model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "llm.model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "llm.model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
253
+ "llm.model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "llm.model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "llm.model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "llm.model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "llm.model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "llm.model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "llm.model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "llm.model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "llm.model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "llm.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "llm.model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "llm.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "llm.model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "llm.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "llm.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "llm.model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "llm.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "llm.model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "llm.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "llm.model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "llm.model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "llm.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "llm.model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "llm.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "llm.model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "llm.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "llm.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "llm.model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "llm.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "llm.model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "llm.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "llm.model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "llm.model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "llm.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "llm.model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "llm.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "llm.model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "llm.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "llm.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "llm.model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "llm.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "llm.model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "llm.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "llm.model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
297
+ "llm.model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
298
+ "llm.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
299
+ "llm.model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
300
+ "llm.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
301
+ "llm.model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
302
+ "llm.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
303
+ "llm.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
304
+ "llm.model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
305
+ "llm.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
306
+ "llm.model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
307
+ "llm.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
308
+ "llm.model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
309
+ "llm.model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
310
+ "llm.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
311
+ "llm.model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
312
+ "llm.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
313
+ "llm.model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
314
+ "llm.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
+ "llm.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
316
+ "llm.model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
317
+ "llm.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
318
+ "llm.model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
319
+ "llm.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
320
+ "llm.model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "llm.model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "llm.model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "llm.model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "llm.model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "llm.model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
326
+ "llm.model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
327
+ "llm.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
328
+ "llm.model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
329
+ "llm.model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
330
+ "llm.model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
331
+ "llm.model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
332
+ "llm.model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "llm.model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "llm.model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "llm.model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "llm.model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "llm.model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "llm.model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "llm.model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "llm.model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "llm.model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "llm.model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "llm.model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "llm.model.norm.weight": "model-00003-of-00004.safetensors",
345
+ "resampler.attn.in_proj_bias": "model-00004-of-00004.safetensors",
346
+ "resampler.attn.in_proj_weight": "model-00004-of-00004.safetensors",
347
+ "resampler.attn.out_proj.bias": "model-00004-of-00004.safetensors",
348
+ "resampler.attn.out_proj.weight": "model-00004-of-00004.safetensors",
349
+ "resampler.kv_proj.weight": "model-00004-of-00004.safetensors",
350
+ "resampler.ln_kv.bias": "model-00004-of-00004.safetensors",
351
+ "resampler.ln_kv.weight": "model-00004-of-00004.safetensors",
352
+ "resampler.ln_post.bias": "model-00004-of-00004.safetensors",
353
+ "resampler.ln_post.weight": "model-00004-of-00004.safetensors",
354
+ "resampler.ln_q.bias": "model-00004-of-00004.safetensors",
355
+ "resampler.ln_q.weight": "model-00004-of-00004.safetensors",
356
+ "resampler.proj": "model-00004-of-00004.safetensors",
357
+ "resampler.query": "model-00004-of-00004.safetensors",
358
+ "vpm.embeddings.patch_embedding.bias": "model-00004-of-00004.safetensors",
359
+ "vpm.embeddings.patch_embedding.weight": "model-00004-of-00004.safetensors",
360
+ "vpm.embeddings.position_embedding.weight": "model-00004-of-00004.safetensors",
361
+ "vpm.encoder.layers.0.layer_norm1.bias": "model-00004-of-00004.safetensors",
362
+ "vpm.encoder.layers.0.layer_norm1.weight": "model-00004-of-00004.safetensors",
363
+ "vpm.encoder.layers.0.layer_norm2.bias": "model-00004-of-00004.safetensors",
364
+ "vpm.encoder.layers.0.layer_norm2.weight": "model-00004-of-00004.safetensors",
365
+ "vpm.encoder.layers.0.mlp.fc1.bias": "model-00004-of-00004.safetensors",
366
+ "vpm.encoder.layers.0.mlp.fc1.weight": "model-00004-of-00004.safetensors",
367
+ "vpm.encoder.layers.0.mlp.fc2.bias": "model-00004-of-00004.safetensors",
368
+ "vpm.encoder.layers.0.mlp.fc2.weight": "model-00004-of-00004.safetensors",
369
+ "vpm.encoder.layers.0.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
370
+ "vpm.encoder.layers.0.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
371
+ "vpm.encoder.layers.0.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
372
+ "vpm.encoder.layers.0.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
373
+ "vpm.encoder.layers.0.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
374
+ "vpm.encoder.layers.0.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
375
+ "vpm.encoder.layers.0.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
376
+ "vpm.encoder.layers.0.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
377
+ "vpm.encoder.layers.1.layer_norm1.bias": "model-00004-of-00004.safetensors",
378
+ "vpm.encoder.layers.1.layer_norm1.weight": "model-00004-of-00004.safetensors",
379
+ "vpm.encoder.layers.1.layer_norm2.bias": "model-00004-of-00004.safetensors",
380
+ "vpm.encoder.layers.1.layer_norm2.weight": "model-00004-of-00004.safetensors",
381
+ "vpm.encoder.layers.1.mlp.fc1.bias": "model-00004-of-00004.safetensors",
382
+ "vpm.encoder.layers.1.mlp.fc1.weight": "model-00004-of-00004.safetensors",
383
+ "vpm.encoder.layers.1.mlp.fc2.bias": "model-00004-of-00004.safetensors",
384
+ "vpm.encoder.layers.1.mlp.fc2.weight": "model-00004-of-00004.safetensors",
385
+ "vpm.encoder.layers.1.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
386
+ "vpm.encoder.layers.1.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
387
+ "vpm.encoder.layers.1.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
388
+ "vpm.encoder.layers.1.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
389
+ "vpm.encoder.layers.1.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
390
+ "vpm.encoder.layers.1.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
391
+ "vpm.encoder.layers.1.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
392
+ "vpm.encoder.layers.1.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
393
+ "vpm.encoder.layers.10.layer_norm1.bias": "model-00004-of-00004.safetensors",
394
+ "vpm.encoder.layers.10.layer_norm1.weight": "model-00004-of-00004.safetensors",
395
+ "vpm.encoder.layers.10.layer_norm2.bias": "model-00004-of-00004.safetensors",
396
+ "vpm.encoder.layers.10.layer_norm2.weight": "model-00004-of-00004.safetensors",
397
+ "vpm.encoder.layers.10.mlp.fc1.bias": "model-00004-of-00004.safetensors",
398
+ "vpm.encoder.layers.10.mlp.fc1.weight": "model-00004-of-00004.safetensors",
399
+ "vpm.encoder.layers.10.mlp.fc2.bias": "model-00004-of-00004.safetensors",
400
+ "vpm.encoder.layers.10.mlp.fc2.weight": "model-00004-of-00004.safetensors",
401
+ "vpm.encoder.layers.10.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
402
+ "vpm.encoder.layers.10.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
403
+ "vpm.encoder.layers.10.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
404
+ "vpm.encoder.layers.10.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
405
+ "vpm.encoder.layers.10.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
406
+ "vpm.encoder.layers.10.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
407
+ "vpm.encoder.layers.10.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
408
+ "vpm.encoder.layers.10.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
409
+ "vpm.encoder.layers.11.layer_norm1.bias": "model-00004-of-00004.safetensors",
410
+ "vpm.encoder.layers.11.layer_norm1.weight": "model-00004-of-00004.safetensors",
411
+ "vpm.encoder.layers.11.layer_norm2.bias": "model-00004-of-00004.safetensors",
412
+ "vpm.encoder.layers.11.layer_norm2.weight": "model-00004-of-00004.safetensors",
413
+ "vpm.encoder.layers.11.mlp.fc1.bias": "model-00004-of-00004.safetensors",
414
+ "vpm.encoder.layers.11.mlp.fc1.weight": "model-00004-of-00004.safetensors",
415
+ "vpm.encoder.layers.11.mlp.fc2.bias": "model-00004-of-00004.safetensors",
416
+ "vpm.encoder.layers.11.mlp.fc2.weight": "model-00004-of-00004.safetensors",
417
+ "vpm.encoder.layers.11.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
418
+ "vpm.encoder.layers.11.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
419
+ "vpm.encoder.layers.11.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
420
+ "vpm.encoder.layers.11.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
421
+ "vpm.encoder.layers.11.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
422
+ "vpm.encoder.layers.11.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
423
+ "vpm.encoder.layers.11.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
424
+ "vpm.encoder.layers.11.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
425
+ "vpm.encoder.layers.12.layer_norm1.bias": "model-00004-of-00004.safetensors",
426
+ "vpm.encoder.layers.12.layer_norm1.weight": "model-00004-of-00004.safetensors",
427
+ "vpm.encoder.layers.12.layer_norm2.bias": "model-00004-of-00004.safetensors",
428
+ "vpm.encoder.layers.12.layer_norm2.weight": "model-00004-of-00004.safetensors",
429
+ "vpm.encoder.layers.12.mlp.fc1.bias": "model-00004-of-00004.safetensors",
430
+ "vpm.encoder.layers.12.mlp.fc1.weight": "model-00004-of-00004.safetensors",
431
+ "vpm.encoder.layers.12.mlp.fc2.bias": "model-00004-of-00004.safetensors",
432
+ "vpm.encoder.layers.12.mlp.fc2.weight": "model-00004-of-00004.safetensors",
433
+ "vpm.encoder.layers.12.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
434
+ "vpm.encoder.layers.12.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
435
+ "vpm.encoder.layers.12.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
436
+ "vpm.encoder.layers.12.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
437
+ "vpm.encoder.layers.12.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
438
+ "vpm.encoder.layers.12.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
439
+ "vpm.encoder.layers.12.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
440
+ "vpm.encoder.layers.12.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
441
+ "vpm.encoder.layers.13.layer_norm1.bias": "model-00004-of-00004.safetensors",
442
+ "vpm.encoder.layers.13.layer_norm1.weight": "model-00004-of-00004.safetensors",
443
+ "vpm.encoder.layers.13.layer_norm2.bias": "model-00004-of-00004.safetensors",
444
+ "vpm.encoder.layers.13.layer_norm2.weight": "model-00004-of-00004.safetensors",
445
+ "vpm.encoder.layers.13.mlp.fc1.bias": "model-00004-of-00004.safetensors",
446
+ "vpm.encoder.layers.13.mlp.fc1.weight": "model-00004-of-00004.safetensors",
447
+ "vpm.encoder.layers.13.mlp.fc2.bias": "model-00004-of-00004.safetensors",
448
+ "vpm.encoder.layers.13.mlp.fc2.weight": "model-00004-of-00004.safetensors",
449
+ "vpm.encoder.layers.13.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
450
+ "vpm.encoder.layers.13.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
451
+ "vpm.encoder.layers.13.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
452
+ "vpm.encoder.layers.13.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
453
+ "vpm.encoder.layers.13.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
454
+ "vpm.encoder.layers.13.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
455
+ "vpm.encoder.layers.13.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
456
+ "vpm.encoder.layers.13.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
457
+ "vpm.encoder.layers.14.layer_norm1.bias": "model-00004-of-00004.safetensors",
458
+ "vpm.encoder.layers.14.layer_norm1.weight": "model-00004-of-00004.safetensors",
459
+ "vpm.encoder.layers.14.layer_norm2.bias": "model-00004-of-00004.safetensors",
460
+ "vpm.encoder.layers.14.layer_norm2.weight": "model-00004-of-00004.safetensors",
461
+ "vpm.encoder.layers.14.mlp.fc1.bias": "model-00004-of-00004.safetensors",
462
+ "vpm.encoder.layers.14.mlp.fc1.weight": "model-00004-of-00004.safetensors",
463
+ "vpm.encoder.layers.14.mlp.fc2.bias": "model-00004-of-00004.safetensors",
464
+ "vpm.encoder.layers.14.mlp.fc2.weight": "model-00004-of-00004.safetensors",
465
+ "vpm.encoder.layers.14.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
466
+ "vpm.encoder.layers.14.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
467
+ "vpm.encoder.layers.14.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
468
+ "vpm.encoder.layers.14.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
469
+ "vpm.encoder.layers.14.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
470
+ "vpm.encoder.layers.14.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
471
+ "vpm.encoder.layers.14.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
472
+ "vpm.encoder.layers.14.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
473
+ "vpm.encoder.layers.15.layer_norm1.bias": "model-00004-of-00004.safetensors",
474
+ "vpm.encoder.layers.15.layer_norm1.weight": "model-00004-of-00004.safetensors",
475
+ "vpm.encoder.layers.15.layer_norm2.bias": "model-00004-of-00004.safetensors",
476
+ "vpm.encoder.layers.15.layer_norm2.weight": "model-00004-of-00004.safetensors",
477
+ "vpm.encoder.layers.15.mlp.fc1.bias": "model-00004-of-00004.safetensors",
478
+ "vpm.encoder.layers.15.mlp.fc1.weight": "model-00004-of-00004.safetensors",
479
+ "vpm.encoder.layers.15.mlp.fc2.bias": "model-00004-of-00004.safetensors",
480
+ "vpm.encoder.layers.15.mlp.fc2.weight": "model-00004-of-00004.safetensors",
481
+ "vpm.encoder.layers.15.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
482
+ "vpm.encoder.layers.15.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
483
+ "vpm.encoder.layers.15.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
484
+ "vpm.encoder.layers.15.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
485
+ "vpm.encoder.layers.15.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
486
+ "vpm.encoder.layers.15.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
487
+ "vpm.encoder.layers.15.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
488
+ "vpm.encoder.layers.15.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
489
+ "vpm.encoder.layers.16.layer_norm1.bias": "model-00004-of-00004.safetensors",
490
+ "vpm.encoder.layers.16.layer_norm1.weight": "model-00004-of-00004.safetensors",
491
+ "vpm.encoder.layers.16.layer_norm2.bias": "model-00004-of-00004.safetensors",
492
+ "vpm.encoder.layers.16.layer_norm2.weight": "model-00004-of-00004.safetensors",
493
+ "vpm.encoder.layers.16.mlp.fc1.bias": "model-00004-of-00004.safetensors",
494
+ "vpm.encoder.layers.16.mlp.fc1.weight": "model-00004-of-00004.safetensors",
495
+ "vpm.encoder.layers.16.mlp.fc2.bias": "model-00004-of-00004.safetensors",
496
+ "vpm.encoder.layers.16.mlp.fc2.weight": "model-00004-of-00004.safetensors",
497
+ "vpm.encoder.layers.16.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
498
+ "vpm.encoder.layers.16.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
499
+ "vpm.encoder.layers.16.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
500
+ "vpm.encoder.layers.16.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
501
+ "vpm.encoder.layers.16.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
502
+ "vpm.encoder.layers.16.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
503
+ "vpm.encoder.layers.16.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
504
+ "vpm.encoder.layers.16.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
505
+ "vpm.encoder.layers.17.layer_norm1.bias": "model-00004-of-00004.safetensors",
506
+ "vpm.encoder.layers.17.layer_norm1.weight": "model-00004-of-00004.safetensors",
507
+ "vpm.encoder.layers.17.layer_norm2.bias": "model-00004-of-00004.safetensors",
508
+ "vpm.encoder.layers.17.layer_norm2.weight": "model-00004-of-00004.safetensors",
509
+ "vpm.encoder.layers.17.mlp.fc1.bias": "model-00004-of-00004.safetensors",
510
+ "vpm.encoder.layers.17.mlp.fc1.weight": "model-00004-of-00004.safetensors",
511
+ "vpm.encoder.layers.17.mlp.fc2.bias": "model-00004-of-00004.safetensors",
512
+ "vpm.encoder.layers.17.mlp.fc2.weight": "model-00004-of-00004.safetensors",
513
+ "vpm.encoder.layers.17.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
514
+ "vpm.encoder.layers.17.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
515
+ "vpm.encoder.layers.17.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
516
+ "vpm.encoder.layers.17.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
517
+ "vpm.encoder.layers.17.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
518
+ "vpm.encoder.layers.17.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
519
+ "vpm.encoder.layers.17.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
520
+ "vpm.encoder.layers.17.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
521
+ "vpm.encoder.layers.18.layer_norm1.bias": "model-00004-of-00004.safetensors",
522
+ "vpm.encoder.layers.18.layer_norm1.weight": "model-00004-of-00004.safetensors",
523
+ "vpm.encoder.layers.18.layer_norm2.bias": "model-00004-of-00004.safetensors",
524
+ "vpm.encoder.layers.18.layer_norm2.weight": "model-00004-of-00004.safetensors",
525
+ "vpm.encoder.layers.18.mlp.fc1.bias": "model-00004-of-00004.safetensors",
526
+ "vpm.encoder.layers.18.mlp.fc1.weight": "model-00004-of-00004.safetensors",
527
+ "vpm.encoder.layers.18.mlp.fc2.bias": "model-00004-of-00004.safetensors",
528
+ "vpm.encoder.layers.18.mlp.fc2.weight": "model-00004-of-00004.safetensors",
529
+ "vpm.encoder.layers.18.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
530
+ "vpm.encoder.layers.18.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
531
+ "vpm.encoder.layers.18.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
532
+ "vpm.encoder.layers.18.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
533
+ "vpm.encoder.layers.18.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
534
+ "vpm.encoder.layers.18.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
535
+ "vpm.encoder.layers.18.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
536
+ "vpm.encoder.layers.18.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
537
+ "vpm.encoder.layers.19.layer_norm1.bias": "model-00004-of-00004.safetensors",
538
+ "vpm.encoder.layers.19.layer_norm1.weight": "model-00004-of-00004.safetensors",
539
+ "vpm.encoder.layers.19.layer_norm2.bias": "model-00004-of-00004.safetensors",
540
+ "vpm.encoder.layers.19.layer_norm2.weight": "model-00004-of-00004.safetensors",
541
+ "vpm.encoder.layers.19.mlp.fc1.bias": "model-00004-of-00004.safetensors",
542
+ "vpm.encoder.layers.19.mlp.fc1.weight": "model-00004-of-00004.safetensors",
543
+ "vpm.encoder.layers.19.mlp.fc2.bias": "model-00004-of-00004.safetensors",
544
+ "vpm.encoder.layers.19.mlp.fc2.weight": "model-00004-of-00004.safetensors",
545
+ "vpm.encoder.layers.19.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
546
+ "vpm.encoder.layers.19.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
547
+ "vpm.encoder.layers.19.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
548
+ "vpm.encoder.layers.19.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
549
+ "vpm.encoder.layers.19.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
550
+ "vpm.encoder.layers.19.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
551
+ "vpm.encoder.layers.19.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
552
+ "vpm.encoder.layers.19.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
553
+ "vpm.encoder.layers.2.layer_norm1.bias": "model-00004-of-00004.safetensors",
554
+ "vpm.encoder.layers.2.layer_norm1.weight": "model-00004-of-00004.safetensors",
555
+ "vpm.encoder.layers.2.layer_norm2.bias": "model-00004-of-00004.safetensors",
556
+ "vpm.encoder.layers.2.layer_norm2.weight": "model-00004-of-00004.safetensors",
557
+ "vpm.encoder.layers.2.mlp.fc1.bias": "model-00004-of-00004.safetensors",
558
+ "vpm.encoder.layers.2.mlp.fc1.weight": "model-00004-of-00004.safetensors",
559
+ "vpm.encoder.layers.2.mlp.fc2.bias": "model-00004-of-00004.safetensors",
560
+ "vpm.encoder.layers.2.mlp.fc2.weight": "model-00004-of-00004.safetensors",
561
+ "vpm.encoder.layers.2.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
562
+ "vpm.encoder.layers.2.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
563
+ "vpm.encoder.layers.2.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
564
+ "vpm.encoder.layers.2.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
565
+ "vpm.encoder.layers.2.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
566
+ "vpm.encoder.layers.2.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
567
+ "vpm.encoder.layers.2.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
568
+ "vpm.encoder.layers.2.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
569
+ "vpm.encoder.layers.20.layer_norm1.bias": "model-00004-of-00004.safetensors",
570
+ "vpm.encoder.layers.20.layer_norm1.weight": "model-00004-of-00004.safetensors",
571
+ "vpm.encoder.layers.20.layer_norm2.bias": "model-00004-of-00004.safetensors",
572
+ "vpm.encoder.layers.20.layer_norm2.weight": "model-00004-of-00004.safetensors",
573
+ "vpm.encoder.layers.20.mlp.fc1.bias": "model-00004-of-00004.safetensors",
574
+ "vpm.encoder.layers.20.mlp.fc1.weight": "model-00004-of-00004.safetensors",
575
+ "vpm.encoder.layers.20.mlp.fc2.bias": "model-00004-of-00004.safetensors",
576
+ "vpm.encoder.layers.20.mlp.fc2.weight": "model-00004-of-00004.safetensors",
577
+ "vpm.encoder.layers.20.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
578
+ "vpm.encoder.layers.20.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
579
+ "vpm.encoder.layers.20.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
580
+ "vpm.encoder.layers.20.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
581
+ "vpm.encoder.layers.20.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
582
+ "vpm.encoder.layers.20.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
583
+ "vpm.encoder.layers.20.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
584
+ "vpm.encoder.layers.20.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
585
+ "vpm.encoder.layers.21.layer_norm1.bias": "model-00004-of-00004.safetensors",
586
+ "vpm.encoder.layers.21.layer_norm1.weight": "model-00004-of-00004.safetensors",
587
+ "vpm.encoder.layers.21.layer_norm2.bias": "model-00004-of-00004.safetensors",
588
+ "vpm.encoder.layers.21.layer_norm2.weight": "model-00004-of-00004.safetensors",
589
+ "vpm.encoder.layers.21.mlp.fc1.bias": "model-00004-of-00004.safetensors",
590
+ "vpm.encoder.layers.21.mlp.fc1.weight": "model-00004-of-00004.safetensors",
591
+ "vpm.encoder.layers.21.mlp.fc2.bias": "model-00004-of-00004.safetensors",
592
+ "vpm.encoder.layers.21.mlp.fc2.weight": "model-00004-of-00004.safetensors",
593
+ "vpm.encoder.layers.21.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
594
+ "vpm.encoder.layers.21.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
595
+ "vpm.encoder.layers.21.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
596
+ "vpm.encoder.layers.21.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
597
+ "vpm.encoder.layers.21.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
598
+ "vpm.encoder.layers.21.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
599
+ "vpm.encoder.layers.21.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
600
+ "vpm.encoder.layers.21.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
601
+ "vpm.encoder.layers.22.layer_norm1.bias": "model-00004-of-00004.safetensors",
602
+ "vpm.encoder.layers.22.layer_norm1.weight": "model-00004-of-00004.safetensors",
603
+ "vpm.encoder.layers.22.layer_norm2.bias": "model-00004-of-00004.safetensors",
604
+ "vpm.encoder.layers.22.layer_norm2.weight": "model-00004-of-00004.safetensors",
605
+ "vpm.encoder.layers.22.mlp.fc1.bias": "model-00004-of-00004.safetensors",
606
+ "vpm.encoder.layers.22.mlp.fc1.weight": "model-00004-of-00004.safetensors",
607
+ "vpm.encoder.layers.22.mlp.fc2.bias": "model-00004-of-00004.safetensors",
608
+ "vpm.encoder.layers.22.mlp.fc2.weight": "model-00004-of-00004.safetensors",
609
+ "vpm.encoder.layers.22.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
610
+ "vpm.encoder.layers.22.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
611
+ "vpm.encoder.layers.22.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
612
+ "vpm.encoder.layers.22.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
613
+ "vpm.encoder.layers.22.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
614
+ "vpm.encoder.layers.22.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
615
+ "vpm.encoder.layers.22.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
616
+ "vpm.encoder.layers.22.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
617
+ "vpm.encoder.layers.23.layer_norm1.bias": "model-00004-of-00004.safetensors",
618
+ "vpm.encoder.layers.23.layer_norm1.weight": "model-00004-of-00004.safetensors",
619
+ "vpm.encoder.layers.23.layer_norm2.bias": "model-00004-of-00004.safetensors",
620
+ "vpm.encoder.layers.23.layer_norm2.weight": "model-00004-of-00004.safetensors",
621
+ "vpm.encoder.layers.23.mlp.fc1.bias": "model-00004-of-00004.safetensors",
622
+ "vpm.encoder.layers.23.mlp.fc1.weight": "model-00004-of-00004.safetensors",
623
+ "vpm.encoder.layers.23.mlp.fc2.bias": "model-00004-of-00004.safetensors",
624
+ "vpm.encoder.layers.23.mlp.fc2.weight": "model-00004-of-00004.safetensors",
625
+ "vpm.encoder.layers.23.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
626
+ "vpm.encoder.layers.23.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
627
+ "vpm.encoder.layers.23.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
628
+ "vpm.encoder.layers.23.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
629
+ "vpm.encoder.layers.23.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
630
+ "vpm.encoder.layers.23.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
631
+ "vpm.encoder.layers.23.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
632
+ "vpm.encoder.layers.23.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
633
+ "vpm.encoder.layers.24.layer_norm1.bias": "model-00004-of-00004.safetensors",
634
+ "vpm.encoder.layers.24.layer_norm1.weight": "model-00004-of-00004.safetensors",
635
+ "vpm.encoder.layers.24.layer_norm2.bias": "model-00004-of-00004.safetensors",
636
+ "vpm.encoder.layers.24.layer_norm2.weight": "model-00004-of-00004.safetensors",
637
+ "vpm.encoder.layers.24.mlp.fc1.bias": "model-00004-of-00004.safetensors",
638
+ "vpm.encoder.layers.24.mlp.fc1.weight": "model-00004-of-00004.safetensors",
639
+ "vpm.encoder.layers.24.mlp.fc2.bias": "model-00004-of-00004.safetensors",
640
+ "vpm.encoder.layers.24.mlp.fc2.weight": "model-00004-of-00004.safetensors",
641
+ "vpm.encoder.layers.24.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
642
+ "vpm.encoder.layers.24.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
643
+ "vpm.encoder.layers.24.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
644
+ "vpm.encoder.layers.24.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
645
+ "vpm.encoder.layers.24.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
646
+ "vpm.encoder.layers.24.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
647
+ "vpm.encoder.layers.24.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
648
+ "vpm.encoder.layers.24.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
649
+ "vpm.encoder.layers.25.layer_norm1.bias": "model-00004-of-00004.safetensors",
650
+ "vpm.encoder.layers.25.layer_norm1.weight": "model-00004-of-00004.safetensors",
651
+ "vpm.encoder.layers.25.layer_norm2.bias": "model-00004-of-00004.safetensors",
652
+ "vpm.encoder.layers.25.layer_norm2.weight": "model-00004-of-00004.safetensors",
653
+ "vpm.encoder.layers.25.mlp.fc1.bias": "model-00004-of-00004.safetensors",
654
+ "vpm.encoder.layers.25.mlp.fc1.weight": "model-00004-of-00004.safetensors",
655
+ "vpm.encoder.layers.25.mlp.fc2.bias": "model-00004-of-00004.safetensors",
656
+ "vpm.encoder.layers.25.mlp.fc2.weight": "model-00004-of-00004.safetensors",
657
+ "vpm.encoder.layers.25.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
658
+ "vpm.encoder.layers.25.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
659
+ "vpm.encoder.layers.25.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
660
+ "vpm.encoder.layers.25.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
661
+ "vpm.encoder.layers.25.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
662
+ "vpm.encoder.layers.25.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
663
+ "vpm.encoder.layers.25.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
664
+ "vpm.encoder.layers.25.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
665
+ "vpm.encoder.layers.26.layer_norm1.bias": "model-00004-of-00004.safetensors",
666
+ "vpm.encoder.layers.26.layer_norm1.weight": "model-00004-of-00004.safetensors",
667
+ "vpm.encoder.layers.26.layer_norm2.bias": "model-00004-of-00004.safetensors",
668
+ "vpm.encoder.layers.26.layer_norm2.weight": "model-00004-of-00004.safetensors",
669
+ "vpm.encoder.layers.26.mlp.fc1.bias": "model-00004-of-00004.safetensors",
670
+ "vpm.encoder.layers.26.mlp.fc1.weight": "model-00004-of-00004.safetensors",
671
+ "vpm.encoder.layers.26.mlp.fc2.bias": "model-00004-of-00004.safetensors",
672
+ "vpm.encoder.layers.26.mlp.fc2.weight": "model-00004-of-00004.safetensors",
673
+ "vpm.encoder.layers.26.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
674
+ "vpm.encoder.layers.26.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
675
+ "vpm.encoder.layers.26.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
676
+ "vpm.encoder.layers.26.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
677
+ "vpm.encoder.layers.26.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
678
+ "vpm.encoder.layers.26.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
679
+ "vpm.encoder.layers.26.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
680
+ "vpm.encoder.layers.26.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
681
+ "vpm.encoder.layers.3.layer_norm1.bias": "model-00004-of-00004.safetensors",
682
+ "vpm.encoder.layers.3.layer_norm1.weight": "model-00004-of-00004.safetensors",
683
+ "vpm.encoder.layers.3.layer_norm2.bias": "model-00004-of-00004.safetensors",
684
+ "vpm.encoder.layers.3.layer_norm2.weight": "model-00004-of-00004.safetensors",
685
+ "vpm.encoder.layers.3.mlp.fc1.bias": "model-00004-of-00004.safetensors",
686
+ "vpm.encoder.layers.3.mlp.fc1.weight": "model-00004-of-00004.safetensors",
687
+ "vpm.encoder.layers.3.mlp.fc2.bias": "model-00004-of-00004.safetensors",
688
+ "vpm.encoder.layers.3.mlp.fc2.weight": "model-00004-of-00004.safetensors",
689
+ "vpm.encoder.layers.3.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
690
+ "vpm.encoder.layers.3.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
691
+ "vpm.encoder.layers.3.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
692
+ "vpm.encoder.layers.3.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
693
+ "vpm.encoder.layers.3.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
694
+ "vpm.encoder.layers.3.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
695
+ "vpm.encoder.layers.3.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
696
+ "vpm.encoder.layers.3.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
697
+ "vpm.encoder.layers.4.layer_norm1.bias": "model-00004-of-00004.safetensors",
698
+ "vpm.encoder.layers.4.layer_norm1.weight": "model-00004-of-00004.safetensors",
699
+ "vpm.encoder.layers.4.layer_norm2.bias": "model-00004-of-00004.safetensors",
700
+ "vpm.encoder.layers.4.layer_norm2.weight": "model-00004-of-00004.safetensors",
701
+ "vpm.encoder.layers.4.mlp.fc1.bias": "model-00004-of-00004.safetensors",
702
+ "vpm.encoder.layers.4.mlp.fc1.weight": "model-00004-of-00004.safetensors",
703
+ "vpm.encoder.layers.4.mlp.fc2.bias": "model-00004-of-00004.safetensors",
704
+ "vpm.encoder.layers.4.mlp.fc2.weight": "model-00004-of-00004.safetensors",
705
+ "vpm.encoder.layers.4.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
706
+ "vpm.encoder.layers.4.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
707
+ "vpm.encoder.layers.4.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
708
+ "vpm.encoder.layers.4.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
709
+ "vpm.encoder.layers.4.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
710
+ "vpm.encoder.layers.4.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
711
+ "vpm.encoder.layers.4.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
712
+ "vpm.encoder.layers.4.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
713
+ "vpm.encoder.layers.5.layer_norm1.bias": "model-00004-of-00004.safetensors",
714
+ "vpm.encoder.layers.5.layer_norm1.weight": "model-00004-of-00004.safetensors",
715
+ "vpm.encoder.layers.5.layer_norm2.bias": "model-00004-of-00004.safetensors",
716
+ "vpm.encoder.layers.5.layer_norm2.weight": "model-00004-of-00004.safetensors",
717
+ "vpm.encoder.layers.5.mlp.fc1.bias": "model-00004-of-00004.safetensors",
718
+ "vpm.encoder.layers.5.mlp.fc1.weight": "model-00004-of-00004.safetensors",
719
+ "vpm.encoder.layers.5.mlp.fc2.bias": "model-00004-of-00004.safetensors",
720
+ "vpm.encoder.layers.5.mlp.fc2.weight": "model-00004-of-00004.safetensors",
721
+ "vpm.encoder.layers.5.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
722
+ "vpm.encoder.layers.5.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
723
+ "vpm.encoder.layers.5.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
724
+ "vpm.encoder.layers.5.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
725
+ "vpm.encoder.layers.5.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
726
+ "vpm.encoder.layers.5.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
727
+ "vpm.encoder.layers.5.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
728
+ "vpm.encoder.layers.5.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
729
+ "vpm.encoder.layers.6.layer_norm1.bias": "model-00004-of-00004.safetensors",
730
+ "vpm.encoder.layers.6.layer_norm1.weight": "model-00004-of-00004.safetensors",
731
+ "vpm.encoder.layers.6.layer_norm2.bias": "model-00004-of-00004.safetensors",
732
+ "vpm.encoder.layers.6.layer_norm2.weight": "model-00004-of-00004.safetensors",
733
+ "vpm.encoder.layers.6.mlp.fc1.bias": "model-00004-of-00004.safetensors",
734
+ "vpm.encoder.layers.6.mlp.fc1.weight": "model-00004-of-00004.safetensors",
735
+ "vpm.encoder.layers.6.mlp.fc2.bias": "model-00004-of-00004.safetensors",
736
+ "vpm.encoder.layers.6.mlp.fc2.weight": "model-00004-of-00004.safetensors",
737
+ "vpm.encoder.layers.6.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
738
+ "vpm.encoder.layers.6.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
739
+ "vpm.encoder.layers.6.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
740
+ "vpm.encoder.layers.6.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
741
+ "vpm.encoder.layers.6.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
742
+ "vpm.encoder.layers.6.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
743
+ "vpm.encoder.layers.6.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
744
+ "vpm.encoder.layers.6.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
745
+ "vpm.encoder.layers.7.layer_norm1.bias": "model-00004-of-00004.safetensors",
746
+ "vpm.encoder.layers.7.layer_norm1.weight": "model-00004-of-00004.safetensors",
747
+ "vpm.encoder.layers.7.layer_norm2.bias": "model-00004-of-00004.safetensors",
748
+ "vpm.encoder.layers.7.layer_norm2.weight": "model-00004-of-00004.safetensors",
749
+ "vpm.encoder.layers.7.mlp.fc1.bias": "model-00004-of-00004.safetensors",
750
+ "vpm.encoder.layers.7.mlp.fc1.weight": "model-00004-of-00004.safetensors",
751
+ "vpm.encoder.layers.7.mlp.fc2.bias": "model-00004-of-00004.safetensors",
752
+ "vpm.encoder.layers.7.mlp.fc2.weight": "model-00004-of-00004.safetensors",
753
+ "vpm.encoder.layers.7.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
754
+ "vpm.encoder.layers.7.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
755
+ "vpm.encoder.layers.7.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
756
+ "vpm.encoder.layers.7.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
757
+ "vpm.encoder.layers.7.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
758
+ "vpm.encoder.layers.7.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
759
+ "vpm.encoder.layers.7.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
760
+ "vpm.encoder.layers.7.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
761
+ "vpm.encoder.layers.8.layer_norm1.bias": "model-00004-of-00004.safetensors",
762
+ "vpm.encoder.layers.8.layer_norm1.weight": "model-00004-of-00004.safetensors",
763
+ "vpm.encoder.layers.8.layer_norm2.bias": "model-00004-of-00004.safetensors",
764
+ "vpm.encoder.layers.8.layer_norm2.weight": "model-00004-of-00004.safetensors",
765
+ "vpm.encoder.layers.8.mlp.fc1.bias": "model-00004-of-00004.safetensors",
766
+ "vpm.encoder.layers.8.mlp.fc1.weight": "model-00004-of-00004.safetensors",
767
+ "vpm.encoder.layers.8.mlp.fc2.bias": "model-00004-of-00004.safetensors",
768
+ "vpm.encoder.layers.8.mlp.fc2.weight": "model-00004-of-00004.safetensors",
769
+ "vpm.encoder.layers.8.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
770
+ "vpm.encoder.layers.8.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
771
+ "vpm.encoder.layers.8.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
772
+ "vpm.encoder.layers.8.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
773
+ "vpm.encoder.layers.8.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
774
+ "vpm.encoder.layers.8.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
775
+ "vpm.encoder.layers.8.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
776
+ "vpm.encoder.layers.8.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
777
+ "vpm.encoder.layers.9.layer_norm1.bias": "model-00004-of-00004.safetensors",
778
+ "vpm.encoder.layers.9.layer_norm1.weight": "model-00004-of-00004.safetensors",
779
+ "vpm.encoder.layers.9.layer_norm2.bias": "model-00004-of-00004.safetensors",
780
+ "vpm.encoder.layers.9.layer_norm2.weight": "model-00004-of-00004.safetensors",
781
+ "vpm.encoder.layers.9.mlp.fc1.bias": "model-00004-of-00004.safetensors",
782
+ "vpm.encoder.layers.9.mlp.fc1.weight": "model-00004-of-00004.safetensors",
783
+ "vpm.encoder.layers.9.mlp.fc2.bias": "model-00004-of-00004.safetensors",
784
+ "vpm.encoder.layers.9.mlp.fc2.weight": "model-00004-of-00004.safetensors",
785
+ "vpm.encoder.layers.9.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
786
+ "vpm.encoder.layers.9.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
787
+ "vpm.encoder.layers.9.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
788
+ "vpm.encoder.layers.9.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
789
+ "vpm.encoder.layers.9.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
790
+ "vpm.encoder.layers.9.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
791
+ "vpm.encoder.layers.9.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
792
+ "vpm.encoder.layers.9.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
793
+ "vpm.post_layernorm.bias": "model-00004-of-00004.safetensors",
794
+ "vpm.post_layernorm.weight": "model-00004-of-00004.safetensors"
795
+ }
796
+ }
checkpoint-1000/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb1165242405b17b3d6a8186ae61b13dcb1faa5a54320bebd74ef8d71b964bf7
3
+ size 15984
checkpoint-1000/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:562c262916c9997ec644c42fed9655ab28706b74fca20290ca921c4761d6a4b0
3
+ size 15984
checkpoint-1000/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8d40f8118f513299624ded0a9bcf09778b961635615090409394d4f96f928f6
3
+ size 15984
checkpoint-1000/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4391f924238a4cb855c4cbdc6d1a14954f785431c75997d05c7a4ee6615dae7
3
+ size 15984
checkpoint-1000/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be7b19bb9543a16bf9f4cd96466ac581436f63070f5815f3a7ba57980608994f
3
+ size 15984
checkpoint-1000/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97da4a1ede0a3e0f96411cacd5bfdf84d9355198f7aadc9bcb8be41122043f63
3
+ size 15984
checkpoint-1000/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:544cb6421b975bd5d2b2360a4e666003794e6197ae654d2ad963cd6572a86ede
3
+ size 15984
checkpoint-1000/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f8d6eb32a23f3bef6262bbcb2eda724b2fd6f5e579969aa27c71a5971331722b
3
+ size 15984
checkpoint-1000/special_tokens_map.json ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<image>",
4
+ "</image>",
5
+ "<ref>",
6
+ "</ref>",
7
+ "<box>",
8
+ "</box>",
9
+ "<quad>",
10
+ "</quad>",
11
+ "<point>",
12
+ "</point>",
13
+ "<slice>",
14
+ "</slice>",
15
+ "<image_id>",
16
+ "</image_id>",
17
+ "<|reserved_special_token_0|>",
18
+ "<|reserved_special_token_1|>",
19
+ "<|reserved_special_token_2|>",
20
+ "<|reserved_special_token_3|>",
21
+ "<|reserved_special_token_4|>",
22
+ "<|reserved_special_token_5|>"
23
+ ],
24
+ "bos_token": {
25
+ "content": "<|im_start|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ },
31
+ "eos_token": {
32
+ "content": "<|im_end|>",
33
+ "lstrip": false,
34
+ "normalized": false,
35
+ "rstrip": false,
36
+ "single_word": false
37
+ },
38
+ "pad_token": {
39
+ "content": "<|endoftext|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false
44
+ },
45
+ "unk_token": {
46
+ "content": "<unk>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false
51
+ }
52
+ }
checkpoint-1000/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1000/tokenizer_config.json ADDED
@@ -0,0 +1,235 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "128244": {
5
+ "content": "<unk>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151643": {
13
+ "content": "<|endoftext|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151644": {
21
+ "content": "<|im_start|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "151645": {
29
+ "content": "<|im_end|>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "151646": {
37
+ "content": "<image>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "151647": {
45
+ "content": "</image>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "151648": {
53
+ "content": "<ref>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "151649": {
61
+ "content": "</ref>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "151650": {
69
+ "content": "<box>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "151651": {
77
+ "content": "</box>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "151652": {
85
+ "content": "<quad>",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "151653": {
93
+ "content": "</quad>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "151654": {
101
+ "content": "<point>",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "151655": {
109
+ "content": "</point>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": true
115
+ },
116
+ "151656": {
117
+ "content": "<slice>",
118
+ "lstrip": false,
119
+ "normalized": false,
120
+ "rstrip": false,
121
+ "single_word": false,
122
+ "special": true
123
+ },
124
+ "151657": {
125
+ "content": "</slice>",
126
+ "lstrip": false,
127
+ "normalized": false,
128
+ "rstrip": false,
129
+ "single_word": false,
130
+ "special": true
131
+ },
132
+ "151658": {
133
+ "content": "<image_id>",
134
+ "lstrip": false,
135
+ "normalized": false,
136
+ "rstrip": false,
137
+ "single_word": false,
138
+ "special": true
139
+ },
140
+ "151659": {
141
+ "content": "</image_id>",
142
+ "lstrip": false,
143
+ "normalized": false,
144
+ "rstrip": false,
145
+ "single_word": false,
146
+ "special": true
147
+ },
148
+ "151660": {
149
+ "content": "<|reserved_special_token_0|>",
150
+ "lstrip": false,
151
+ "normalized": false,
152
+ "rstrip": false,
153
+ "single_word": false,
154
+ "special": true
155
+ },
156
+ "151661": {
157
+ "content": "<|reserved_special_token_1|>",
158
+ "lstrip": false,
159
+ "normalized": false,
160
+ "rstrip": false,
161
+ "single_word": false,
162
+ "special": true
163
+ },
164
+ "151662": {
165
+ "content": "<|reserved_special_token_2|>",
166
+ "lstrip": false,
167
+ "normalized": false,
168
+ "rstrip": false,
169
+ "single_word": false,
170
+ "special": true
171
+ },
172
+ "151663": {
173
+ "content": "<|reserved_special_token_3|>",
174
+ "lstrip": false,
175
+ "normalized": false,
176
+ "rstrip": false,
177
+ "single_word": false,
178
+ "special": true
179
+ },
180
+ "151664": {
181
+ "content": "<|reserved_special_token_4|>",
182
+ "lstrip": false,
183
+ "normalized": false,
184
+ "rstrip": false,
185
+ "single_word": false,
186
+ "special": true
187
+ },
188
+ "151665": {
189
+ "content": "<|reserved_special_token_5|>",
190
+ "lstrip": false,
191
+ "normalized": false,
192
+ "rstrip": false,
193
+ "single_word": false,
194
+ "special": true
195
+ }
196
+ },
197
+ "additional_special_tokens": [
198
+ "<image>",
199
+ "</image>",
200
+ "<ref>",
201
+ "</ref>",
202
+ "<box>",
203
+ "</box>",
204
+ "<quad>",
205
+ "</quad>",
206
+ "<point>",
207
+ "</point>",
208
+ "<slice>",
209
+ "</slice>",
210
+ "<image_id>",
211
+ "</image_id>",
212
+ "<|reserved_special_token_0|>",
213
+ "<|reserved_special_token_1|>",
214
+ "<|reserved_special_token_2|>",
215
+ "<|reserved_special_token_3|>",
216
+ "<|reserved_special_token_4|>",
217
+ "<|reserved_special_token_5|>"
218
+ ],
219
+ "auto_map": {
220
+ "AutoTokenizer": [
221
+ "openbmb/MiniCPM-V-2_6--tokenization_minicpmv_fast.MiniCPMVTokenizerFast",
222
+ null
223
+ ]
224
+ },
225
+ "bos_token": "<|im_start|>",
226
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
227
+ "clean_up_tokenization_spaces": false,
228
+ "eos_token": "<|im_end|>",
229
+ "errors": "replace",
230
+ "model_max_length": 1000000000000000019884624838656,
231
+ "pad_token": "<|endoftext|>",
232
+ "split_special_tokens": false,
233
+ "tokenizer_class": "MiniCPMVTokenizer",
234
+ "unk_token": "<unk>"
235
+ }
checkpoint-1000/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:26798bc5b1c4f534ed72486fa08d3c075f7542313fc335b32ca75501771f985e
3
+ size 7160
checkpoint-1000/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1000/zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
checkpoint-1200/added_tokens.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</box>": 151651,
3
+ "</image>": 151647,
4
+ "</image_id>": 151659,
5
+ "</point>": 151655,
6
+ "</quad>": 151653,
7
+ "</ref>": 151649,
8
+ "</slice>": 151657,
9
+ "<box>": 151650,
10
+ "<image>": 151646,
11
+ "<image_id>": 151658,
12
+ "<point>": 151654,
13
+ "<quad>": 151652,
14
+ "<ref>": 151648,
15
+ "<slice>": 151656,
16
+ "<|endoftext|>": 151643,
17
+ "<|im_end|>": 151645,
18
+ "<|im_start|>": 151644,
19
+ "<|reserved_special_token_0|>": 151660,
20
+ "<|reserved_special_token_1|>": 151661,
21
+ "<|reserved_special_token_2|>": 151662,
22
+ "<|reserved_special_token_3|>": 151663,
23
+ "<|reserved_special_token_4|>": 151664,
24
+ "<|reserved_special_token_5|>": 151665
25
+ }
checkpoint-1200/config.json ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "openbmb/MiniCPM-V-2_6",
3
+ "version": 2.6,
4
+ "architectures": [
5
+ "MiniCPMV"
6
+ ],
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_minicpm.MiniCPMVConfig",
9
+ "AutoModel": "modeling_minicpmv.MiniCPMV",
10
+ "AutoModelForCausalLM": "modeling_minicpmv.MiniCPMV"
11
+ },
12
+ "attention_dropout": 0.0,
13
+ "bos_token_id": 151643,
14
+ "eos_token_id": 151645,
15
+ "hidden_act": "silu",
16
+ "hidden_size": 3584,
17
+ "initializer_range": 0.02,
18
+ "intermediate_size": 18944,
19
+ "max_position_embeddings": 32768,
20
+ "max_window_layers": 28,
21
+ "num_attention_heads": 28,
22
+ "num_hidden_layers": 28,
23
+ "num_key_value_heads": 4,
24
+ "rms_norm_eps": 1e-06,
25
+ "rope_theta": 1000000.0,
26
+ "sliding_window": 131072,
27
+ "tie_word_embeddings": false,
28
+ "torch_dtype": "bfloat16",
29
+ "transformers_version": "4.40.0",
30
+ "use_cache": true,
31
+ "use_sliding_window": false,
32
+ "vocab_size": 151666,
33
+ "batch_vision_input": true,
34
+ "drop_vision_last_layer": false,
35
+ "image_size": 448,
36
+ "model_type": "minicpmv",
37
+ "patch_size": 14,
38
+ "query_num": 64,
39
+ "slice_config": {
40
+ "max_slice_nums": 9,
41
+ "patch_size": 14,
42
+ "model_type": "minicpmv"
43
+ },
44
+ "slice_mode": true,
45
+ "vision_config": {
46
+ "hidden_size": 1152,
47
+ "image_size": 980,
48
+ "intermediate_size": 4304,
49
+ "model_type": "siglip",
50
+ "num_attention_heads": 16,
51
+ "num_hidden_layers": 27,
52
+ "patch_size": 14
53
+ }
54
+ }
checkpoint-1200/configuration_minicpm.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ """ MiniCPMV model configuration"""
3
+
4
+ import os
5
+ from typing import Union
6
+
7
+ from transformers.utils import logging
8
+ from transformers import Qwen2Config, PretrainedConfig
9
+ from .modeling_navit_siglip import SiglipVisionConfig
10
+
11
+ logger = logging.get_logger(__name__)
12
+
13
+
14
+ class MiniCPMVSliceConfig(PretrainedConfig):
15
+ model_type = "minicpmv"
16
+
17
+ def __init__(
18
+ self,
19
+ patch_size=14,
20
+ max_slice_nums=9,
21
+ scale_resolution=448,
22
+ **kwargs,
23
+ ):
24
+ super().__init__(**kwargs)
25
+ self.patch_size = patch_size
26
+ self.max_slice_nums = max_slice_nums
27
+ self.scale_resolution = scale_resolution
28
+
29
+ @classmethod
30
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
31
+ cls._set_token_in_kwargs(kwargs)
32
+
33
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
34
+
35
+ if config_dict.get("model_type") == "minicpmv":
36
+ config_dict = config_dict["slice_config"]
37
+
38
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
39
+ logger.warning(
40
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
41
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
42
+ )
43
+
44
+ return cls.from_dict(config_dict, **kwargs)
45
+
46
+
47
+
48
+ class MiniCPMVConfig(Qwen2Config):
49
+ model_type = "minicpmv"
50
+ keys_to_ignore_at_inference = ["past_key_values"]
51
+
52
+ default_vision_config = {
53
+ "hidden_size": 1152,
54
+ "image_size": 980,
55
+ "intermediate_size": 4304,
56
+ "model_type": "siglip",
57
+ "num_attention_heads": 16,
58
+ "num_hidden_layers": 27,
59
+ "patch_size": 14,
60
+ }
61
+
62
+ def __init__(
63
+ self,
64
+ use_cache=True,
65
+ query_num=64,
66
+ image_size=448,
67
+ drop_vision_last_layer=True,
68
+ batch_vision_input=True,
69
+ slice_config=None,
70
+ vision_config=None,
71
+ use_image_id=True,
72
+ vision_batch_size=16,
73
+ **kwargs,
74
+ ):
75
+ self.use_cache = use_cache
76
+ self.query_num = query_num
77
+ self.image_size = image_size
78
+ self.drop_vision_last_layer = drop_vision_last_layer
79
+ self.batch_vision_input = batch_vision_input
80
+ self.use_image_id = use_image_id
81
+ self.vision_batch_size = vision_batch_size
82
+
83
+ if slice_config is None:
84
+ self.slice_config = MiniCPMVSliceConfig(max_slice_nums=1)
85
+ else:
86
+ self.slice_config = MiniCPMVSliceConfig(**slice_config)
87
+ self.slice_mode = True
88
+
89
+ # same as HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit add tgt_sizes
90
+ if vision_config is None:
91
+ self.vision_config = SiglipVisionConfig(**self.default_vision_config)
92
+ logger.info("vision_config is None, using default vision config")
93
+ elif isinstance(vision_config, dict):
94
+ self.vision_config = SiglipVisionConfig(**vision_config)
95
+ elif isinstance(vision_config, SiglipVisionConfig):
96
+ self.vision_config = vision_config
97
+
98
+ self.patch_size = self.vision_config.patch_size
99
+
100
+ super().__init__(**kwargs)
checkpoint-1200/generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 151643,
4
+ "eos_token_id": 151645,
5
+ "transformers_version": "4.40.0"
6
+ }
checkpoint-1200/global_step1200/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2752cd1f75fafecb77d5c4e8b59f05dfa45e25e135d1cc597ad852e59155fbdc
3
+ size 12148768700
checkpoint-1200/global_step1200/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f5d814c5d273965d79aea91dad00052b5a911c92330780a78ab160b588003a2
3
+ size 12148771068
checkpoint-1200/global_step1200/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6aa21febf31d7880e457f0420109a4b04d3d0c2c36510d4ea9d8c8eff267790
3
+ size 12148770556
checkpoint-1200/global_step1200/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6f5ab5f1b00de17ac0fbc0581b37b6bd6397749a3b5e01b935782027391781c
3
+ size 12148770876
checkpoint-1200/global_step1200/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27fcfd55f2c7f8cc30c30eeba9f356b8b346a294c9c6682a165df7b41a8a1541
3
+ size 12148771132
checkpoint-1200/global_step1200/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90e75ed84a259209e4bfe33cecc8cdf1b4d3a339030a3f791acb76abb6bae6a3
3
+ size 12148770684
checkpoint-1200/global_step1200/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ba3240c5b0d493fe035720b2d35e7aa5eac62a3a5deafa7e1b3ad44043aab65
3
+ size 12148770812
checkpoint-1200/global_step1200/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c88668a2afcd84ecf0469c33b75a1e5ec2813623d9a7199634ff947a6784d91
3
+ size 12148802748
checkpoint-1200/global_step1200/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f51a7fb6d5d5d882fbd64f8110c09f4151be4c75f7d4375e8671ef6de028c5e9
3
+ size 16198565472
checkpoint-1200/image_processing_minicpmv.py ADDED
@@ -0,0 +1,418 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional, Union, Dict, Any, List
2
+
3
+ import torch
4
+ import math
5
+ import PIL.Image
6
+ import PIL.ImageSequence
7
+ import numpy as np
8
+ import PIL
9
+ from PIL import Image
10
+
11
+ from transformers.utils import TensorType, requires_backends, is_torch_dtype, is_torch_device
12
+ from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
13
+ from transformers import AutoImageProcessor
14
+ from transformers.image_transforms import to_channel_dimension_format
15
+ from transformers.image_utils import (
16
+ ImageInput,
17
+ make_list_of_images,
18
+ valid_images,
19
+ is_torch_tensor,
20
+ is_batched,
21
+ to_numpy_array,
22
+ infer_channel_dimension_format,
23
+ ChannelDimension
24
+ )
25
+
26
+
27
+ def recursive_converter(converter, value):
28
+ if isinstance(value, list):
29
+ new_value = []
30
+ for v in value:
31
+ new_value += [recursive_converter(converter, v)]
32
+ return new_value
33
+ else:
34
+ return converter(value)
35
+
36
+
37
+ class MiniCPMVBatchFeature(BatchFeature):
38
+ r"""
39
+ Extend from BatchFeature for supporting various image size
40
+ """
41
+ def __init__(self, data: Optional[Dict[str, Any]] = None, tensor_type: Union[None, str, TensorType] = None):
42
+ super().__init__(data)
43
+ self.convert_to_tensors(tensor_type=tensor_type)
44
+
45
+ def convert_to_tensors(self, tensor_type: Optional[Union[str, TensorType]] = None):
46
+ if tensor_type is None:
47
+ return self
48
+
49
+ is_tensor, as_tensor = self._get_is_as_tensor_fns(tensor_type)
50
+
51
+ def converter(value):
52
+ try:
53
+ if not is_tensor(value):
54
+ tensor = as_tensor(value)
55
+ return tensor
56
+ except: # noqa E722
57
+ if key == "overflowing_values":
58
+ raise ValueError("Unable to create tensor returning overflowing values of different lengths. ")
59
+ raise ValueError(
60
+ "Unable to create tensor, you should probably activate padding "
61
+ "with 'padding=True' to have batched tensors with the same length."
62
+ )
63
+
64
+
65
+ for key, value in self.items():
66
+ self[key] = recursive_converter(converter, value)
67
+ return self
68
+
69
+ def to(self, *args, **kwargs) -> "MiniCPMVBatchFeature":
70
+ requires_backends(self, ["torch"])
71
+ import torch
72
+
73
+ def cast_tensor(v):
74
+ # check if v is a floating point
75
+ if torch.is_floating_point(v):
76
+ # cast and send to device
77
+ return v.to(*args, **kwargs)
78
+ elif device is not None:
79
+ return v.to(device=device)
80
+ else:
81
+ return v
82
+
83
+ new_data = {}
84
+ device = kwargs.get("device")
85
+ # Check if the args are a device or a dtype
86
+ if device is None and len(args) > 0:
87
+ # device should be always the first argument
88
+ arg = args[0]
89
+ if is_torch_dtype(arg):
90
+ # The first argument is a dtype
91
+ pass
92
+ elif isinstance(arg, str) or is_torch_device(arg) or isinstance(arg, int):
93
+ device = arg
94
+ else:
95
+ # it's something else
96
+ raise ValueError(f"Attempting to cast a BatchFeature to type {str(arg)}. This is not supported.")
97
+ # We cast only floating point tensors to avoid issues with tokenizers casting `LongTensor` to `FloatTensor`
98
+ for k, v in self.items():
99
+ new_data[k] = recursive_converter(cast_tensor, v)
100
+ self.data = new_data
101
+ return self
102
+
103
+
104
+ class MiniCPMVImageProcessor(BaseImageProcessor):
105
+ model_input_names = ["pixel_values"]
106
+
107
+ def __init__(
108
+ self,
109
+ max_slice_nums=9,
110
+ scale_resolution=448,
111
+ patch_size=14,
112
+ **kwargs):
113
+ super().__init__(**kwargs)
114
+ self.max_slice_nums = max_slice_nums
115
+ self.scale_resolution = scale_resolution
116
+ self.patch_size = patch_size
117
+ self.use_image_id = kwargs.pop("use_image_id", False)
118
+ self.image_feature_size = kwargs.pop("image_feature_size", 64)
119
+ self.im_start_token = kwargs.pop("im_start", "<image>")
120
+ self.im_end_token = kwargs.pop("im_end", "</image>")
121
+ self.slice_start_token = kwargs.pop("slice_start", "<slice>")
122
+ self.slice_end_token = kwargs.pop("slice_end", "</slice>")
123
+ self.unk_token = kwargs.pop("unk", "<unk>")
124
+ self.im_id_start = kwargs.pop("im_id_start", "<image_id>")
125
+ self.im_id_end = kwargs.pop("im_id_end", "</image_id>")
126
+ self.slice_mode = kwargs.pop("slice_mode", True)
127
+ self.mean = np.array(kwargs.pop("norm_mean", [0.5, 0.5, 0.5]))
128
+ self.std = np.array(kwargs.pop("norm_std", [0.5, 0.5, 0.5]))
129
+ self.version = kwargs.pop("version", 2.0)
130
+
131
+ def ensure_divide(self, length, patch_size):
132
+ return max(round(length / patch_size) * patch_size, patch_size)
133
+
134
+ def find_best_resize(self,
135
+ original_size,
136
+ scale_resolution,
137
+ patch_size,
138
+ allow_upscale=False):
139
+ width, height = original_size
140
+ if (width * height >
141
+ scale_resolution * scale_resolution) or allow_upscale:
142
+ r = width / height
143
+ height = int(scale_resolution / math.sqrt(r))
144
+ width = int(height * r)
145
+ best_width = self.ensure_divide(width, patch_size)
146
+ best_height = self.ensure_divide(height, patch_size)
147
+ return (best_width, best_height)
148
+
149
+ def get_refine_size(self,
150
+ original_size,
151
+ grid,
152
+ scale_resolution,
153
+ patch_size,
154
+ allow_upscale=False):
155
+ width, height = original_size
156
+ grid_x, grid_y = grid
157
+
158
+ refine_width = self.ensure_divide(width, grid_x)
159
+ refine_height = self.ensure_divide(height, grid_y)
160
+
161
+ grid_width = refine_width / grid_x
162
+ grid_height = refine_height / grid_y
163
+
164
+ best_grid_size = self.find_best_resize((grid_width, grid_height),
165
+ scale_resolution,
166
+ patch_size,
167
+ allow_upscale=allow_upscale)
168
+ refine_size = (best_grid_size[0] * grid_x, best_grid_size[1] * grid_y)
169
+ return refine_size
170
+
171
+ def split_to_patches(self, image, grid):
172
+ patches = []
173
+ width, height = image.size
174
+ grid_x = int(width / grid[0])
175
+ grid_y = int(height / grid[1])
176
+ for i in range(0, height, grid_y):
177
+ images = []
178
+ for j in range(0, width, grid_x):
179
+ box = (j, i, j + grid_x, i + grid_y)
180
+ patch = image.crop(box)
181
+ images.append(patch)
182
+ patches.append(images)
183
+ return patches
184
+
185
+ def slice_image(
186
+ self, image, max_slice_nums=9, scale_resolution=448, patch_size=14, never_split=False
187
+ ):
188
+ original_size = image.size
189
+ source_image = None
190
+ best_grid = self.get_sliced_grid(original_size, max_slice_nums, never_split)
191
+ patches = []
192
+
193
+ if best_grid is None:
194
+ # dont need to slice, upsample
195
+ best_size = self.find_best_resize(
196
+ original_size, scale_resolution, patch_size, allow_upscale=True
197
+ )
198
+ source_image = image.resize(best_size, resample=Image.Resampling.BICUBIC)
199
+ else:
200
+ # source image, down-sampling and ensure divided by patch_size
201
+ best_resize = self.find_best_resize(original_size, scale_resolution, patch_size)
202
+ source_image = image.copy().resize(best_resize, resample=Image.Resampling.BICUBIC)
203
+ refine_size = self.get_refine_size(
204
+ original_size, best_grid, scale_resolution, patch_size, allow_upscale=True
205
+ )
206
+ refine_image = image.resize(refine_size, resample=Image.Resampling.BICUBIC)
207
+ patches = self.split_to_patches(refine_image, best_grid)
208
+
209
+ return source_image, patches, best_grid
210
+
211
+ def get_grid_placeholder(self, grid):
212
+ if grid is None:
213
+ return ""
214
+ slice_image_placeholder = (
215
+ self.slice_start_token
216
+ + self.unk_token * self.image_feature_size
217
+ + self.slice_end_token
218
+ )
219
+
220
+ cols = grid[0]
221
+ rows = grid[1]
222
+ slices = []
223
+ for i in range(rows):
224
+ lines = []
225
+ for j in range(cols):
226
+ lines.append(slice_image_placeholder)
227
+ slices.append("".join(lines))
228
+
229
+ slice_placeholder = "\n".join(slices)
230
+ return slice_placeholder
231
+
232
+ def get_image_id_placeholder(self, idx=0):
233
+ return f"{self.im_id_start}{idx}{self.im_id_end}"
234
+
235
+ def get_sliced_images(self, image, max_slice_nums=None):
236
+ slice_images = []
237
+
238
+ if not self.slice_mode:
239
+ return [image]
240
+
241
+ max_slice_nums = self.max_slice_nums if max_slice_nums is None else int(max_slice_nums)
242
+ assert max_slice_nums > 0
243
+ source_image, patches, sliced_grid = self.slice_image(
244
+ image,
245
+ max_slice_nums, # default: 9
246
+ self.scale_resolution, # default: 448
247
+ self.patch_size # default: 14
248
+ )
249
+
250
+ slice_images.append(source_image)
251
+ if len(patches) > 0:
252
+ for i in range(len(patches)):
253
+ for j in range(len(patches[0])):
254
+ slice_images.append(patches[i][j])
255
+ return slice_images
256
+
257
+ def get_sliced_grid(self, image_size, max_slice_nums, nerver_split=False):
258
+ original_width, original_height = image_size
259
+ log_ratio = math.log(original_width / original_height)
260
+ ratio = original_width * original_height / (self.scale_resolution * self.scale_resolution)
261
+ multiple = min(math.ceil(ratio), max_slice_nums)
262
+ if multiple <= 1 or nerver_split:
263
+ return None
264
+ candidate_split_grids_nums = []
265
+ for i in [multiple - 1, multiple, multiple + 1]:
266
+ if i == 1 or i > max_slice_nums:
267
+ continue
268
+ candidate_split_grids_nums.append(i)
269
+
270
+ candidate_grids = []
271
+ for split_grids_nums in candidate_split_grids_nums:
272
+ m = 1
273
+ while m <= split_grids_nums:
274
+ if split_grids_nums % m == 0:
275
+ candidate_grids.append([m, split_grids_nums // m])
276
+ m += 1
277
+
278
+ best_grid = [1, 1]
279
+ min_error = float("inf")
280
+ for grid in candidate_grids:
281
+ error = abs(log_ratio - math.log(grid[0] / grid[1]))
282
+ if error < min_error:
283
+ best_grid = grid
284
+ min_error = error
285
+
286
+ return best_grid
287
+
288
+ def get_slice_image_placeholder(self, image_size, image_idx=0, max_slice_nums=None, use_image_id=None):
289
+ max_slice_nums = self.max_slice_nums if max_slice_nums is None else int(max_slice_nums)
290
+ assert max_slice_nums > 0
291
+ grid = self.get_sliced_grid(image_size=image_size, max_slice_nums=max_slice_nums)
292
+
293
+ image_placeholder = (
294
+ self.im_start_token
295
+ + self.unk_token * self.image_feature_size
296
+ + self.im_end_token
297
+ )
298
+ use_image_id = self.use_image_id if use_image_id is None else bool(use_image_id)
299
+ if use_image_id:
300
+ final_placeholder = self.get_image_id_placeholder(image_idx) + image_placeholder
301
+ else:
302
+ final_placeholder = image_placeholder
303
+
304
+ if self.slice_mode:
305
+ final_placeholder = final_placeholder + self.get_grid_placeholder(grid=grid)
306
+ return final_placeholder
307
+
308
+ def to_pil_image(self, image, rescale=None) -> PIL.Image.Image:
309
+ """
310
+ Converts `image` to a PIL Image. Optionally rescales it and puts the channel dimension back as the last axis if
311
+ needed.
312
+
313
+ Args:
314
+ image (`PIL.Image.Image` or `numpy.ndarray` or `torch.Tensor`):
315
+ The image to convert to the PIL Image format.
316
+ rescale (`bool`, *optional*):
317
+ Whether or not to apply the scaling factor (to make pixel values integers between 0 and 255). Will
318
+ default to `True` if the image type is a floating type, `False` otherwise.
319
+ """
320
+ if isinstance(image, PIL.Image.Image):
321
+ return image
322
+ if is_torch_tensor(image):
323
+ image = image.numpy()
324
+
325
+ if isinstance(image, np.ndarray):
326
+ if rescale is None:
327
+ # rescale default to the array being of floating type.
328
+ rescale = isinstance(image.flat[0], np.floating)
329
+ # If the channel as been moved to first dim, we put it back at the end.
330
+ if image.ndim == 3 and image.shape[0] in [1, 3]:
331
+ image = image.transpose(1, 2, 0)
332
+ if rescale:
333
+ image = image * 255
334
+ image = image.astype(np.uint8)
335
+ return PIL.Image.fromarray(image)
336
+ return image
337
+
338
+ def reshape_by_patch(self, image):
339
+ """
340
+ :param image: shape [3, H, W]
341
+ :param patch_size:
342
+ :return: [3, patch_size, HW/patch_size]
343
+ """
344
+ image = torch.from_numpy(image)
345
+ patch_size = self.patch_size
346
+ patches = torch.nn.functional.unfold(
347
+ image,
348
+ (patch_size, patch_size),
349
+ stride=(patch_size, patch_size)
350
+ )
351
+
352
+ patches = patches.reshape(image.size(0), patch_size, patch_size, -1)
353
+ patches = patches.permute(0, 1, 3, 2).reshape(image.size(0), patch_size, -1)
354
+ return patches.numpy()
355
+
356
+ def preprocess(
357
+ self,
358
+ images: Union[Image.Image, List[Image.Image], List[List[Image.Image]]],
359
+ do_pad: Optional[bool] = True, # TODO: add pad for MiniCPM-Llama3-V-2_5
360
+ max_slice_nums: int = None,
361
+ return_tensors: Optional[Union[str, TensorType]] = None,
362
+ **kwargs
363
+ ) -> MiniCPMVBatchFeature:
364
+ if isinstance(images, Image.Image):
365
+ images_list = [[images]]
366
+ elif isinstance(images[0], Image.Image):
367
+ images_list = [images]
368
+ else:
369
+ images_list = images
370
+
371
+ new_images_list = []
372
+ image_sizes_list = []
373
+ tgt_sizes_list = []
374
+
375
+ for _images in images_list:
376
+ if _images is None or len(_images) == 0:
377
+ new_images_list.append([])
378
+ image_sizes_list.append([])
379
+ tgt_sizes_list.append([])
380
+ continue
381
+ if not valid_images(_images):
382
+ raise ValueError(
383
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
384
+ "torch.Tensor, tf.Tensor or jax.ndarray."
385
+ )
386
+
387
+ _images = [self.to_pil_image(image).convert("RGB") for image in _images]
388
+ input_data_format = infer_channel_dimension_format(np.array(_images[0]))
389
+
390
+ new_images = []
391
+ image_sizes = [image.size for image in _images]
392
+ tgt_sizes = []
393
+ for image in _images:
394
+ image_patches = self.get_sliced_images(image, max_slice_nums)
395
+ image_patches = [to_numpy_array(image).astype(np.float32) / 255 for image in image_patches]
396
+ image_patches = [
397
+ self.normalize(image=image, mean=self.mean, std=self.std, input_data_format=input_data_format)
398
+ for image in image_patches
399
+ ]
400
+ image_patches = [
401
+ to_channel_dimension_format(image, ChannelDimension.FIRST, input_channel_dim=input_data_format)
402
+ for image in image_patches
403
+ ]
404
+ for slice_image in image_patches:
405
+ new_images.append(self.reshape_by_patch(slice_image))
406
+ tgt_sizes.append(np.array((slice_image.shape[1] // self.patch_size, slice_image.shape[2] // self.patch_size)))
407
+
408
+ if tgt_sizes:
409
+ tgt_sizes = np.vstack(tgt_sizes)
410
+
411
+ new_images_list.append(new_images)
412
+ image_sizes_list.append(image_sizes)
413
+ tgt_sizes_list.append(tgt_sizes)
414
+ return MiniCPMVBatchFeature(
415
+ data={"pixel_values": new_images_list, "image_sizes": image_sizes_list, "tgt_sizes": tgt_sizes_list}, tensor_type=return_tensors
416
+ )
417
+
418
+ AutoImageProcessor.register("MiniCPMVImageProcessor", MiniCPMVImageProcessor)
checkpoint-1200/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step1200