from transformers import PreTrainedModel, PretrainedConfig from transformers.modeling_outputs import BaseModelOutput import torch import torch.nn as nn from models.model.transformer import Transformer from models.model.sparse_autoencoder import SparseAutoencoder class CustomConfig(PretrainedConfig): model_type = "custom_model" def __init__(self, hidden_size=768, num_attention_heads=12, num_hidden_layers=12, intermediate_size=3072, hidden_dropout_prob=0.1, num_act_classes=5, num_emotion_classes=7, **kwargs): super().__init__(**kwargs) self.hidden_size = hidden_size self.num_attention_heads = num_attention_heads self.num_hidden_layers = num_hidden_layers self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.num_act_classes = num_act_classes self.num_emotion_classes = num_emotion_classes class CustomModel(PreTrainedModel): config_class = CustomConfig def __init__(self, config): super().__init__(config) self.transformer = Transformer( src_pad_idx=0, trg_pad_idx=0, trg_sos_idx=101, enc_voc_size=30522, dec_voc_size=30522, d_model=config.hidden_size, max_len=128, ffn_hidden=config.intermediate_size, n_head=config.num_attention_heads, n_layers=config.num_hidden_layers, drop_prob=config.hidden_dropout_prob, device='cuda' if torch.cuda.is_available() else 'cpu' ) self.batch_norm = nn.BatchNorm1d(config.hidden_size) self.dropout = nn.Dropout(p=config.hidden_dropout_prob) self.act_classifier = nn.Linear(config.hidden_size, config.num_act_classes) self.emotion_classifier = nn.Linear(config.hidden_size, config.num_emotion_classes) self.sparse_autoencoder = SparseAutoencoder( input_size=config.hidden_size, hidden_size=config.hidden_size // 2, sparsity_param=0.05, beta=3 ) self.init_weights() def forward(self, input_ids=None, attention_mask=None, **kwargs): transformer_output = self.transformer.encoder(input_ids, attention_mask) transformer_output = self.batch_norm(transformer_output.view(-1, transformer_output.size(-1))) transformer_output = self.dropout(transformer_output) reconstructed, kl_div, encoded = self.sparse_autoencoder(transformer_output) cls_output = reconstructed[:, 0, :] act_output = self.act_classifier(cls_output) emotion_output = self.emotion_classifier(cls_output) return BaseModelOutput(last_hidden_state=cls_output, act_output=act_output, emotion_output=emotion_output, kl_div=kl_div)