File size: 6,980 Bytes
edb90e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
---
base_model: BEE-spoke-data/verysmol_llama-v11-KIx2
datasets:
- BEE-spoke-data/knowledge-inoc-concat-v1
inference: false
license: apache-2.0
metrics:
- accuracy
model_creator: BEE-spoke-data
model_name: verysmol_llama-v11-KIx2
pipeline_tag: text-generation
quantized_by: afrideva
tags:
- generated_from_trainer
- gguf
- ggml
- quantized
- q2_k
- q3_k_m
- q4_k_m
- q5_k_m
- q6_k
- q8_0
widget:
- example_title: El Microondas
text: My name is El Microondas the Wise and
- example_title: Kennesaw State University
text: Kennesaw State University is a public
- example_title: Bungie
text: Bungie Studios is an American video game developer. They are most famous for
developing the award winning Halo series of video games. They also made Destiny.
The studio was founded
- example_title: Mona Lisa
text: The Mona Lisa is a world-renowned painting created by
- example_title: Harry Potter Series
text: The Harry Potter series, written by J.K. Rowling, begins with the book titled
- example_title: Riddle
text: 'Question: I have cities, but no houses. I have mountains, but no trees. I
have water, but no fish. What am I?
Answer:'
- example_title: Photosynthesis
text: The process of photosynthesis involves the conversion of
- example_title: Story Continuation
text: Jane went to the store to buy some groceries. She picked up apples, oranges,
and a loaf of bread. When she got home, she realized she forgot
- example_title: Math Problem
text: 'Problem 2: If a train leaves Station A at 9:00 AM and travels at 60 mph,
and another train leaves Station B at 10:00 AM and travels at 80 mph, when will
they meet if the distance between the stations is 300 miles?
To determine'
- example_title: Algorithm Definition
text: In the context of computer programming, an algorithm is
---
# BEE-spoke-data/verysmol_llama-v11-KIx2-GGUF
Quantized GGUF model files for [verysmol_llama-v11-KIx2](https://huggingface.co/BEE-spoke-data/verysmol_llama-v11-KIx2) from [BEE-spoke-data](https://huggingface.co/BEE-spoke-data)
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [verysmol_llama-v11-kix2.fp16.gguf](https://huggingface.co/afrideva/verysmol_llama-v11-KIx2-GGUF/resolve/main/verysmol_llama-v11-kix2.fp16.gguf) | fp16 | 116.89 MB |
| [verysmol_llama-v11-kix2.q2_k.gguf](https://huggingface.co/afrideva/verysmol_llama-v11-KIx2-GGUF/resolve/main/verysmol_llama-v11-kix2.q2_k.gguf) | q2_k | 30.14 MB |
| [verysmol_llama-v11-kix2.q3_k_m.gguf](https://huggingface.co/afrideva/verysmol_llama-v11-KIx2-GGUF/resolve/main/verysmol_llama-v11-kix2.q3_k_m.gguf) | q3_k_m | 33.71 MB |
| [verysmol_llama-v11-kix2.q4_k_m.gguf](https://huggingface.co/afrideva/verysmol_llama-v11-KIx2-GGUF/resolve/main/verysmol_llama-v11-kix2.q4_k_m.gguf) | q4_k_m | 38.34 MB |
| [verysmol_llama-v11-kix2.q5_k_m.gguf](https://huggingface.co/afrideva/verysmol_llama-v11-KIx2-GGUF/resolve/main/verysmol_llama-v11-kix2.q5_k_m.gguf) | q5_k_m | 43.21 MB |
| [verysmol_llama-v11-kix2.q6_k.gguf](https://huggingface.co/afrideva/verysmol_llama-v11-KIx2-GGUF/resolve/main/verysmol_llama-v11-kix2.q6_k.gguf) | q6_k | 48.39 MB |
| [verysmol_llama-v11-kix2.q8_0.gguf](https://huggingface.co/afrideva/verysmol_llama-v11-KIx2-GGUF/resolve/main/verysmol_llama-v11-kix2.q8_0.gguf) | q8_0 | 62.45 MB |
## Original Model Card:
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# verysmol_llama-v11-KIx2
## Model description
This model is a fine-tuned version of v10 (refinedweb-3m dedup) further trained for 2 epochs on KI dataset.
It achieves the following results on the evaluation set:
- Loss: 2.8876
- Accuracy: 0.4502
---
## evals
`hf-causal-experimental (pretrained=pszemraj/verysmol_llama-v11-KIx2,revision=main,trust_remote_code=True,dtype='float'), limit: None, provide_description: False, num_fewshot: 0, batch_size: 16`
| Task |Version| Metric | Value | |Stderr|
|--------------|------:|--------|-------:|---|-----:|
|arc_easy | 0|acc | 0.4024|± |0.0101|
| | |acc_norm| 0.3788|± |0.0100|
|boolq | 1|acc | 0.6199|± |0.0085|
|lambada_openai| 0|ppl |111.9939|± |4.6906|
| | |acc | 0.2354|± |0.0059|
|openbookqa | 0|acc | 0.1440|± |0.0157|
| | |acc_norm| 0.2760|± |0.0200|
|piqa | 0|acc | 0.5713|± |0.0115|
| | |acc_norm| 0.5664|± |0.0116|
|winogrande | 0|acc | 0.5201|± |0.0140|
| Task |Version| Metric |Value | |Stderr|
|-------------|------:|--------|-----:|---|-----:|
|arc_challenge| 0|acc |0.1971|± |0.0116|
| | |acc_norm|0.2278|± |0.0123|
| Task |Version| Metric |Value | |Stderr|
|---------|------:|--------|-----:|---|-----:|
|hellaswag| 0|acc |0.2618|± |0.0088|
| | |acc_norm|0.2797|± |0.0090|
| Task |Version|Metric|Value | |Stderr|
|-------------|------:|------|-----:|---|-----:|
|truthfulqa_mc| 1|mc1 |0.2509|± |0.0152|
| | |mc2 |0.4492|± |0.0156|
---
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00014
- train_batch_size: 16
- eval_batch_size: 16
- seed: 17514
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-06
- lr_scheduler_type: inverse_sqrt
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 2.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 3.0681 | 0.03 | 150 | 3.0689 | 0.4259 |
| 3.0113 | 0.07 | 300 | 3.0433 | 0.4278 |
| 2.9468 | 0.1 | 450 | 3.0362 | 0.4288 |
| 3.0162 | 0.13 | 600 | 3.0148 | 0.4326 |
| 2.9531 | 0.17 | 750 | 3.0012 | 0.4341 |
| 2.9282 | 0.2 | 900 | 2.9923 | 0.4358 |
| 2.9485 | 0.23 | 1050 | 2.9845 | 0.4357 |
| 2.9365 | 0.27 | 1200 | 2.9749 | 0.4375 |
...
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.8215 | 1.7 | 7650 | 2.8943 | 0.4496 |
| 2.7714 | 1.74 | 7800 | 2.8914 | 0.4501 |
| 2.8132 | 1.77 | 7950 | 2.8913 | 0.4500 |
| 2.8505 | 1.8 | 8100 | 2.8906 | 0.4502 |
| 2.8294 | 1.84 | 8250 | 2.8901 | 0.4502 |
| 2.7977 | 1.87 | 8400 | 2.8891 | 0.4499 |
| 2.7501 | 1.9 | 8550 | 2.8878 | 0.4505 |
| 2.8038 | 1.94 | 8700 | 2.8883 | 0.4504 |
| 2.7547 | 1.97 | 8850 | 2.8876 | 0.4502 |
--- |