Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: segestic/Tinystories-gpt-0.1-3m
|
3 |
+
datasets:
|
4 |
+
- roneneldan/TinyStories
|
5 |
+
inference: true
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
library_name: transformers
|
9 |
+
model_creator: segestic
|
10 |
+
model_name: Tinystories-gpt-0.1-3m
|
11 |
+
pipeline_tag: text-generation
|
12 |
+
quantized_by: afrideva
|
13 |
+
tags:
|
14 |
+
- gguf
|
15 |
+
- ggml
|
16 |
+
- quantized
|
17 |
+
---
|
18 |
+
|
19 |
+
# Tinystories-gpt-0.1-3m-GGUF
|
20 |
+
|
21 |
+
Quantized GGUF model files for [Tinystories-gpt-0.1-3m](https://huggingface.co/segestic/Tinystories-gpt-0.1-3m) from [segestic](https://huggingface.co/segestic)
|
22 |
+
|
23 |
+
## Original Model Card:
|
24 |
+
|
25 |
+
## We tried to use the huggingface transformers library to recreate the TinyStories models on Consumer GPU using GPT2 Architecture instead of GPT-Neo Architecture orignally used in the paper (https://arxiv.org/abs/2305.07759). Output model is 15mb and has 3 million parameters.
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
# ------ EXAMPLE USAGE 1 ---
|
30 |
+
|
31 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
32 |
+
tokenizer = AutoTokenizer.from_pretrained("segestic/Tinystories-gpt-0.1-3m")
|
33 |
+
|
34 |
+
model = AutoModelForCausalLM.from_pretrained("segestic/Tinystories-gpt-0.1-3m")
|
35 |
+
|
36 |
+
prompt = "Once upon a time there was"
|
37 |
+
|
38 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
39 |
+
#### Generate completion
|
40 |
+
output = model.generate(input_ids, max_length = 1000, num_beams=1)
|
41 |
+
#### Decode the completion
|
42 |
+
output_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
43 |
+
#### Print the generated text
|
44 |
+
print(output_text)
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
+
# ------ EXAMPLE USAGE 2 ------
|
49 |
+
## Use a pipeline as a high-level helper
|
50 |
+
from transformers import pipeline
|
51 |
+
#### pipeline
|
52 |
+
pipe = pipeline("text-generation", model="segestic/Tinystories-gpt-0.1-3m")
|
53 |
+
#### prompt
|
54 |
+
prompt = "where is the little girl"
|
55 |
+
#### generate completion
|
56 |
+
output = pipe(prompt, max_length=1000, num_beams=1)
|
57 |
+
#### decode the completion
|
58 |
+
generated_text = output[0]['generated_text']
|
59 |
+
#### Print the generated text
|
60 |
+
print(generated_text)
|