Initial commit
Browse files- .gitattributes +1 -0
- README.md +36 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +105 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -30,3 +30,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
30 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
31 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
32 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
30 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
31 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
32 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
33 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 1328.81 +/- 262.74
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: AntBulletEnv-v0
|
20 |
+
type: AntBulletEnv-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
24 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a1f79137da0fc59e356d596612f5988a11d55a0f4a1778af0099346ecaea8adf
|
3 |
+
size 129194
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fa42d9de170>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa42d9de200>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa42d9de290>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa42d9de320>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fa42d9de3b0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fa42d9de440>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa42d9de4d0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fa42d9de560>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa42d9de5f0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa42d9de680>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa42d9de710>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fa42da20d80>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
+
"optimizer_kwargs": {
|
29 |
+
"alpha": 0.99,
|
30 |
+
"eps": 1e-05,
|
31 |
+
"weight_decay": 0
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"observation_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
37 |
+
"dtype": "float32",
|
38 |
+
"_shape": [
|
39 |
+
28
|
40 |
+
],
|
41 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
42 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
43 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
44 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"action_space": {
|
48 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu",
|
50 |
+
"dtype": "float32",
|
51 |
+
"_shape": [
|
52 |
+
8
|
53 |
+
],
|
54 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
55 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
56 |
+
"bounded_below": "[ True True True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True True True]",
|
58 |
+
"_np_random": null
|
59 |
+
},
|
60 |
+
"n_envs": 4,
|
61 |
+
"num_timesteps": 2000000,
|
62 |
+
"_total_timesteps": 2000000,
|
63 |
+
"_num_timesteps_at_start": 0,
|
64 |
+
"seed": null,
|
65 |
+
"action_noise": null,
|
66 |
+
"start_time": 1663681213.9272866,
|
67 |
+
"learning_rate": 0.00096,
|
68 |
+
"tensorboard_log": "./tensorboard",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAnjXePksW9j3zFOA+Mc+nP3SJ2T8uOM89Tf2WP4UNeD7R+My+ixwDv6enJL4KMz4/N4igP6cADz+mKC6/JfwVP+YnmT1S0+s+V1/xPnMR2L64Leq+kf8Ov2r4X7/V/O6+xyRyv/C3Ez8mWK0+j6cbP7nhz76KUca+GpE6P/PGQD/3Jaw8Ckayvwe3vr1/yw68dh2nPDKdpT853yC/+bKUP5LYlD7H1Qu+AyvuPlfJ1L09m50/dbBGvtodiT7Qje48MkCOvjqQKD8obb6+SOHhv8ckcr/wtxM/JlitPo+nGz8Tx1A/k1JUPzwywL6IZ2w+kwUWPiNweD+Af8o/WLLKvuHSqL/RIzQ72+Sqv2O/0j4c66o/YRhbvNL59b+2JK4+ZS6Bv7Pwlz21a74+0JPuvZK7kb6fgUW/k4nyvthmmD7HJHK/8LcTPyZYrT6Ppxs/DnPtvkacqD8zSQrABoniv7Xkcr9cTVY8MJB3P9V7nj9w3Z8/Y2Savu6hHD+Pc/k+ZHzWv+0KKjwYU6i/ic49v3CNqr4n50S+VfMdPu0HuD9Y9Pc+b9nkPhAorr/w4JS8GlOHP/C3Ez8mWK0+j6cbP5R0lGIu"
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="
|
80 |
+
},
|
81 |
+
"_last_original_obs": {
|
82 |
+
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAHy5PLUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICzB508AAAAABTW5b8AAAAA3faGvQAAAAB1++k/AAAAALxMgz0AAAAAezEAQAAAAADnW/c7AAAAAFC7+L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2lZm2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAjLcJPAAAAACy5/2/AAAAAI4MDb4AAAAAWvTpPwAAAAB9BJe9AAAAAF+u/T8AAAAAhZWhvAAAAAD4jtu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5M26NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCCO+L0AAAAAe+nqvwAAAAA6/Po9AAAAAAm19D8AAAAAQO/5vQAAAAA8n/I/AAAAACvX770AAAAAmSnsvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPCSmTUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDkRMa9AAAAAOEM8b8AAAAAtW8CvgAAAADOV/k/AAAAAAYmNz0AAAAAWEDzPwAAAACJWuO8AAAAAGmp/r8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"
|
84 |
+
},
|
85 |
+
"_episode_num": 0,
|
86 |
+
"use_sde": true,
|
87 |
+
"sde_sample_freq": -1,
|
88 |
+
"_current_progress_remaining": 0.0,
|
89 |
+
"ep_info_buffer": {
|
90 |
+
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI38xHkLhJmMAWyUTegDjAF0lEdAqL2/4REncHV9lChoBkdAluMEgbIcR2gHTegDaAhHQKi+W+7lJYl1fZQoaAZHQJRTanzg/C9oB03oA2gIR0CowTNUOuq4dX2UKGgGR0CU8jl41P30aAdN6ANoCEdAqMONxXGOuXV9lChoBkdAlp8MJMQEp2gHTegDaAhHQKjKIhje9Bd1fZQoaAZHQJV7SpxWDHxoB03oA2gIR0CoysEZJkGzdX2UKGgGR0CThrR5TqB3aAdN6ANoCEdAqM2c7OmixnV9lChoBkdAmFrPgaWHDmgHTegDaAhHQKjP93M6ikB1fZQoaAZHQJi+b2zv7WNoB03oA2gIR0Co1p+Q2dd3dX2UKGgGR0CW9ROu7pV0aAdN6ANoCEdAqNdFkSVW0nV9lChoBkdAmfar8ejmCGgHTegDaAhHQKjaQJxeb/h1fZQoaAZHQJMnbt2LYPJoB03oA2gIR0Co3K24mTkidX2UKGgGR0CRNXsH0K7aaAdN6ANoCEdAqONd2NedCnV9lChoBkdAj3KwEIPbwmgHTegDaAhHQKjkAIv8IiV1fZQoaAZHQJH8AFdLQHBoB03oA2gIR0Co5vyon8badX2UKGgGR0CGUvxYq5LAaAdN6ANoCEdAqOmIUFjd6HV9lChoBkdAl1MSjk+5fGgHTegDaAhHQKjwE/fO2Rd1fZQoaAZHQJHtKVSn+AFoB03oA2gIR0Co8Kx82JizdX2UKGgGR0CQ9QDdgv12aAdN6ANoCEdAqPOjsfJV83V9lChoBkdAlwM9CeEqUmgHTegDaAhHQKj2EL4N7Sl1fZQoaAZHQJJ4R0NjLB9oB03oA2gIR0Co/JaUA1ejdX2UKGgGR0CS/5FgUlAvaAdN6ANoCEdAqP03MB6rvXV9lChoBkdAk2fhvze41GgHTegDaAhHQKj//kiD/VB1fZQoaAZHQJZljpA2Q4loB03oA2gIR0CpAlU9IPK/dX2UKGgGR0CSeS+XZ5AyaAdN6ANoCEdAqQjcZtNzsHV9lChoBkdAk1A0V8CxNmgHTegDaAhHQKkJgEMb3oN1fZQoaAZHQJF+FFLFn7JoB03oA2gIR0CpDGH4O+ZgdX2UKGgGR0CN9KvZAY51aAdN6ANoCEdAqQ7DxI8QqnV9lChoBkdAl5H0ZeiSJWgHTegDaAhHQKkVVZM+NcZ1fZQoaAZHQJbY0euFHrhoB03oA2gIR0CpFfpNj9XLdX2UKGgGR0CW5Y72criEaAdN6ANoCEdAqRjT/+85CHV9lChoBkdAlcw5ML4N7WgHTegDaAhHQKkbMOCGvfV1fZQoaAZHQJM+CjdpItloB03oA2gIR0CpIbcfeUILdX2UKGgGR0CTlyVj7Q9iaAdN6ANoCEdAqSJSQA+6iHV9lChoBkdAkr/u717IDGgHTegDaAhHQKklOOCoS+R1fZQoaAZHQJHDUB91EE1oB03oA2gIR0CpJ5tKyv9tdX2UKGgGR0CRAYDEWIoFaAdN6ANoCEdAqS4voNd7fHV9lChoBkdAk3OxXnyNGWgHTegDaAhHQKkuz3HJcPh1fZQoaAZHQJNhuXmeUY9oB03oA2gIR0CpMaTQ3PzGdX2UKGgGR0CSEnoC+10DaAdN6ANoCEdAqTQFNQCSzXV9lChoBkdAkjfsmrsByWgHTegDaAhHQKk6iYu01Il1fZQoaAZHQJM3Hx4IKMNoB03oA2gIR0CpOyZeAuqWdX2UKGgGR0CUAVapgkTpaAdN6ANoCEdAqT32ViWmg3V9lChoBkdAlN07xZuAJGgHTegDaAhHQKlAVZ3cHnl1fZQoaAZHQJYMs1Muez5oB03oA2gIR0CpRvc0k4WDdX2UKGgGR0CUHooZQ53laAdN6ANoCEdAqUePsVtXP3V9lChoBkdAlecfA9FF2GgHTegDaAhHQKlKdUhFEzB1fZQoaAZHQJMRcQ9RrJtoB03oA2gIR0CpTNcGkep5dX2UKGgGR0CSxyKTjebeaAdN6ANoCEdAqVNSPCEYfnV9lChoBkdAlFbWEkB0ZGgHTegDaAhHQKlT7nSOR1Z1fZQoaAZHQJOXqjsUqQRoB03oA2gIR0CpVs7AUL2IdX2UKGgGR0CWCPwLmZE2aAdN6ANoCEdAqVkgMBp5/3V9lChoBkdAlxRKQzUI9mgHTegDaAhHQKlfp2/zreJ1fZQoaAZHQJacqBmPHT9oB03oA2gIR0CpYD75uZTidX2UKGgGR0CZc+AE+xGEaAdN6ANoCEdAqWM1D4QBgnV9lChoBkdAlostUn5SFWgHTegDaAhHQKlliPkq+al1fZQoaAZHQJc73HbRF7VoB03oA2gIR0CpbASxqwhXdX2UKGgGR0CWr6QjD8+BaAdN6ANoCEdAqWygGnn+ynV9lChoBkdAlodWr4nF52gHTegDaAhHQKlvfid8Rcx1fZQoaAZHQJamNloUSIxoB03oA2gIR0CpcebFCLMtdX2UKGgGR0CXpBFpwjt5aAdN6ANoCEdAqXhtyvLX+XV9lChoBkdAlzHaLbYbsGgHTegDaAhHQKl5CfDk2gp1fZQoaAZHQJWHDRVp9JBoB03oA2gIR0Cpe9vznRsudX2UKGgGR0CWFMum78NyaAdN6ANoCEdAqX43IuGsWHV9lChoBkdAl7JxdIGyHGgHTegDaAhHQKmEsfUWl/J1fZQoaAZHQJjSeZTho/RoB03oA2gIR0CphU+umrKedX2UKGgGR0CWDfJ9iMHbaAdN6ANoCEdAqYg/jjrAxnV9lChoBkdAl+xns9jgAWgHTegDaAhHQKmKmlgMMJB1fZQoaAZHQJVSYtYjjaRoB03oA2gIR0CpkSJNbkfcdX2UKGgGR0CUre4PPLPlaAdN6ANoCEdAqZG/dKujh3V9lChoBkdAkliDp1RtQGgHTegDaAhHQKmUqSIP9UF1fZQoaAZHQJK5LL7oB7xoB03oA2gIR0CplwpW3jMndX2UKGgGR0CT8lag2606aAdN6ANoCEdAqZ222y9mH3V9lChoBkdAkx0yb2Dg62gHTegDaAhHQKmeWcFQl8h1fZQoaAZHQJJ6vodMj/xoB03oA2gIR0CpoTbUPQOXdX2UKGgGR0CSPVde6ZpjaAdN6ANoCEdAqaOM/+sHSnV9lChoBkdAkYypkK/mDGgHTegDaAhHQKmqA3gk1Mx1fZQoaAZHQJRD0VdonKJoB03oA2gIR0CpqqJFb3XadX2UKGgGR0CQv8U3n6l+aAdN6ANoCEdAqa2Azk6tDHV9lChoBkdAlUftZV4oqmgHTegDaAhHQKmv4/7BO591fZQoaAZHQJPUtaPjn3doB03oA2gIR0CptmOeSSvDdX2UKGgGR0CRdo+6Ae7uaAdN6ANoCEdAqbcE1qFh5XV9lChoBkdAkNqCExqO92gHTegDaAhHQKm54KkVN6B1fZQoaAZHQJTNIwJw84hoB03oA2gIR0CpvDcyFfzCdX2UKGgGR0CVcmxL0z0paAdN6ANoCEdAqcKptcfNinV9lChoBkdAkRihesxO+WgHTegDaAhHQKnDRUH6dlN1fZQoaAZHQJQrVpoK2KFoB03oA2gIR0CpxhgCOmzjdX2UKGgGR0CTv3yc0+C9aAdN6ANoCEdAqch4caOxS3V9lChoBkdAkGect03fh2gHTegDaAhHQKnPElabF0h1fZQoaAZHQJeSByimEXdoB03oA2gIR0Cpz6/LDAJtdX2UKGgGR0CDbwbR4QjEaAdN6ANoCEdAqdKGthd+onV9lChoBkdAlS9rilzltGgHTegDaAhHQKnU5ijtXxR1fZQoaAZHQJIpBev6j35oB03oA2gIR0Cp23glv60qdX2UKGgGR0CTgO4LkS26aAdN6ANoCEdAqdwRTOxB3XV9lChoBkdAjtEKjzqbB2gHTegDaAhHQKne6QumJnB1fZQoaAZHQJDR6B7NSqFoB03oA2gIR0Cp4WoqTbFkdX2UKGgGR0CGKqSs8xKyaAdN6ANoCEdAqef3e1rqMXV9lChoBkdAkf8QdGRV62gHTegDaAhHQKnojiz9jwx1fZQoaAZHQJN/fVawD/5oB03oA2gIR0Cp620W2w3YdX2UKGgGR0CScwKwY+B6aAdN6ANoCEdAqe3MpZwGW3VlLg=="
|
92 |
+
},
|
93 |
+
"ep_success_buffer": {
|
94 |
+
":type:": "<class 'collections.deque'>",
|
95 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
+
},
|
97 |
+
"_n_updates": 62500,
|
98 |
+
"n_steps": 8,
|
99 |
+
"gamma": 0.99,
|
100 |
+
"gae_lambda": 0.9,
|
101 |
+
"ent_coef": 0.0,
|
102 |
+
"vf_coef": 0.4,
|
103 |
+
"max_grad_norm": 0.5,
|
104 |
+
"normalize_advantage": false
|
105 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9685b47ecb17b8d69155e7a6bd3389ff9b802c7559d634ba2d3e520bef9132db
|
3 |
+
size 56126
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d6fd545d0438bbdbce89766a26194c570a64d1c558f1bfa92dad84eff99a6c7e
|
3 |
+
size 56766
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.7.14
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa42d9de170>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa42d9de200>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa42d9de290>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa42d9de320>", "_build": "<function ActorCriticPolicy._build at 0x7fa42d9de3b0>", "forward": "<function ActorCriticPolicy.forward at 0x7fa42d9de440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa42d9de4d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa42d9de560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa42d9de5f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa42d9de680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa42d9de710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa42da20d80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1663681213.9272866, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAnjXePksW9j3zFOA+Mc+nP3SJ2T8uOM89Tf2WP4UNeD7R+My+ixwDv6enJL4KMz4/N4igP6cADz+mKC6/JfwVP+YnmT1S0+s+V1/xPnMR2L64Leq+kf8Ov2r4X7/V/O6+xyRyv/C3Ez8mWK0+j6cbP7nhz76KUca+GpE6P/PGQD/3Jaw8Ckayvwe3vr1/yw68dh2nPDKdpT853yC/+bKUP5LYlD7H1Qu+AyvuPlfJ1L09m50/dbBGvtodiT7Qje48MkCOvjqQKD8obb6+SOHhv8ckcr/wtxM/JlitPo+nGz8Tx1A/k1JUPzwywL6IZ2w+kwUWPiNweD+Af8o/WLLKvuHSqL/RIzQ72+Sqv2O/0j4c66o/YRhbvNL59b+2JK4+ZS6Bv7Pwlz21a74+0JPuvZK7kb6fgUW/k4nyvthmmD7HJHK/8LcTPyZYrT6Ppxs/DnPtvkacqD8zSQrABoniv7Xkcr9cTVY8MJB3P9V7nj9w3Z8/Y2Savu6hHD+Pc/k+ZHzWv+0KKjwYU6i/ic49v3CNqr4n50S+VfMdPu0HuD9Y9Pc+b9nkPhAorr/w4JS8GlOHP/C3Ez8mWK0+j6cbP5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAHy5PLUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICzB508AAAAABTW5b8AAAAA3faGvQAAAAB1++k/AAAAALxMgz0AAAAAezEAQAAAAADnW/c7AAAAAFC7+L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2lZm2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAjLcJPAAAAACy5/2/AAAAAI4MDb4AAAAAWvTpPwAAAAB9BJe9AAAAAF+u/T8AAAAAhZWhvAAAAAD4jtu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5M26NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCCO+L0AAAAAe+nqvwAAAAA6/Po9AAAAAAm19D8AAAAAQO/5vQAAAAA8n/I/AAAAACvX770AAAAAmSnsvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPCSmTUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDkRMa9AAAAAOEM8b8AAAAAtW8CvgAAAADOV/k/AAAAAAYmNz0AAAAAWEDzPwAAAACJWuO8AAAAAGmp/r8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI38xHkLhJmMAWyUTegDjAF0lEdAqL2/4REncHV9lChoBkdAluMEgbIcR2gHTegDaAhHQKi+W+7lJYl1fZQoaAZHQJRTanzg/C9oB03oA2gIR0CowTNUOuq4dX2UKGgGR0CU8jl41P30aAdN6ANoCEdAqMONxXGOuXV9lChoBkdAlp8MJMQEp2gHTegDaAhHQKjKIhje9Bd1fZQoaAZHQJV7SpxWDHxoB03oA2gIR0CoysEZJkGzdX2UKGgGR0CThrR5TqB3aAdN6ANoCEdAqM2c7OmixnV9lChoBkdAmFrPgaWHDmgHTegDaAhHQKjP93M6ikB1fZQoaAZHQJi+b2zv7WNoB03oA2gIR0Co1p+Q2dd3dX2UKGgGR0CW9ROu7pV0aAdN6ANoCEdAqNdFkSVW0nV9lChoBkdAmfar8ejmCGgHTegDaAhHQKjaQJxeb/h1fZQoaAZHQJMnbt2LYPJoB03oA2gIR0Co3K24mTkidX2UKGgGR0CRNXsH0K7aaAdN6ANoCEdAqONd2NedCnV9lChoBkdAj3KwEIPbwmgHTegDaAhHQKjkAIv8IiV1fZQoaAZHQJH8AFdLQHBoB03oA2gIR0Co5vyon8badX2UKGgGR0CGUvxYq5LAaAdN6ANoCEdAqOmIUFjd6HV9lChoBkdAl1MSjk+5fGgHTegDaAhHQKjwE/fO2Rd1fZQoaAZHQJHtKVSn+AFoB03oA2gIR0Co8Kx82JizdX2UKGgGR0CQ9QDdgv12aAdN6ANoCEdAqPOjsfJV83V9lChoBkdAlwM9CeEqUmgHTegDaAhHQKj2EL4N7Sl1fZQoaAZHQJJ4R0NjLB9oB03oA2gIR0Co/JaUA1ejdX2UKGgGR0CS/5FgUlAvaAdN6ANoCEdAqP03MB6rvXV9lChoBkdAk2fhvze41GgHTegDaAhHQKj//kiD/VB1fZQoaAZHQJZljpA2Q4loB03oA2gIR0CpAlU9IPK/dX2UKGgGR0CSeS+XZ5AyaAdN6ANoCEdAqQjcZtNzsHV9lChoBkdAk1A0V8CxNmgHTegDaAhHQKkJgEMb3oN1fZQoaAZHQJF+FFLFn7JoB03oA2gIR0CpDGH4O+ZgdX2UKGgGR0CN9KvZAY51aAdN6ANoCEdAqQ7DxI8QqnV9lChoBkdAl5H0ZeiSJWgHTegDaAhHQKkVVZM+NcZ1fZQoaAZHQJbY0euFHrhoB03oA2gIR0CpFfpNj9XLdX2UKGgGR0CW5Y72criEaAdN6ANoCEdAqRjT/+85CHV9lChoBkdAlcw5ML4N7WgHTegDaAhHQKkbMOCGvfV1fZQoaAZHQJM+CjdpItloB03oA2gIR0CpIbcfeUILdX2UKGgGR0CTlyVj7Q9iaAdN6ANoCEdAqSJSQA+6iHV9lChoBkdAkr/u717IDGgHTegDaAhHQKklOOCoS+R1fZQoaAZHQJHDUB91EE1oB03oA2gIR0CpJ5tKyv9tdX2UKGgGR0CRAYDEWIoFaAdN6ANoCEdAqS4voNd7fHV9lChoBkdAk3OxXnyNGWgHTegDaAhHQKkuz3HJcPh1fZQoaAZHQJNhuXmeUY9oB03oA2gIR0CpMaTQ3PzGdX2UKGgGR0CSEnoC+10DaAdN6ANoCEdAqTQFNQCSzXV9lChoBkdAkjfsmrsByWgHTegDaAhHQKk6iYu01Il1fZQoaAZHQJM3Hx4IKMNoB03oA2gIR0CpOyZeAuqWdX2UKGgGR0CUAVapgkTpaAdN6ANoCEdAqT32ViWmg3V9lChoBkdAlN07xZuAJGgHTegDaAhHQKlAVZ3cHnl1fZQoaAZHQJYMs1Muez5oB03oA2gIR0CpRvc0k4WDdX2UKGgGR0CUHooZQ53laAdN6ANoCEdAqUePsVtXP3V9lChoBkdAlecfA9FF2GgHTegDaAhHQKlKdUhFEzB1fZQoaAZHQJMRcQ9RrJtoB03oA2gIR0CpTNcGkep5dX2UKGgGR0CSxyKTjebeaAdN6ANoCEdAqVNSPCEYfnV9lChoBkdAlFbWEkB0ZGgHTegDaAhHQKlT7nSOR1Z1fZQoaAZHQJOXqjsUqQRoB03oA2gIR0CpVs7AUL2IdX2UKGgGR0CWCPwLmZE2aAdN6ANoCEdAqVkgMBp5/3V9lChoBkdAlxRKQzUI9mgHTegDaAhHQKlfp2/zreJ1fZQoaAZHQJacqBmPHT9oB03oA2gIR0CpYD75uZTidX2UKGgGR0CZc+AE+xGEaAdN6ANoCEdAqWM1D4QBgnV9lChoBkdAlostUn5SFWgHTegDaAhHQKlliPkq+al1fZQoaAZHQJc73HbRF7VoB03oA2gIR0CpbASxqwhXdX2UKGgGR0CWr6QjD8+BaAdN6ANoCEdAqWygGnn+ynV9lChoBkdAlodWr4nF52gHTegDaAhHQKlvfid8Rcx1fZQoaAZHQJamNloUSIxoB03oA2gIR0CpcebFCLMtdX2UKGgGR0CXpBFpwjt5aAdN6ANoCEdAqXhtyvLX+XV9lChoBkdAlzHaLbYbsGgHTegDaAhHQKl5CfDk2gp1fZQoaAZHQJWHDRVp9JBoB03oA2gIR0Cpe9vznRsudX2UKGgGR0CWFMum78NyaAdN6ANoCEdAqX43IuGsWHV9lChoBkdAl7JxdIGyHGgHTegDaAhHQKmEsfUWl/J1fZQoaAZHQJjSeZTho/RoB03oA2gIR0CphU+umrKedX2UKGgGR0CWDfJ9iMHbaAdN6ANoCEdAqYg/jjrAxnV9lChoBkdAl+xns9jgAWgHTegDaAhHQKmKmlgMMJB1fZQoaAZHQJVSYtYjjaRoB03oA2gIR0CpkSJNbkfcdX2UKGgGR0CUre4PPLPlaAdN6ANoCEdAqZG/dKujh3V9lChoBkdAkliDp1RtQGgHTegDaAhHQKmUqSIP9UF1fZQoaAZHQJK5LL7oB7xoB03oA2gIR0CplwpW3jMndX2UKGgGR0CT8lag2606aAdN6ANoCEdAqZ222y9mH3V9lChoBkdAkx0yb2Dg62gHTegDaAhHQKmeWcFQl8h1fZQoaAZHQJJ6vodMj/xoB03oA2gIR0CpoTbUPQOXdX2UKGgGR0CSPVde6ZpjaAdN6ANoCEdAqaOM/+sHSnV9lChoBkdAkYypkK/mDGgHTegDaAhHQKmqA3gk1Mx1fZQoaAZHQJRD0VdonKJoB03oA2gIR0CpqqJFb3XadX2UKGgGR0CQv8U3n6l+aAdN6ANoCEdAqa2Azk6tDHV9lChoBkdAlUftZV4oqmgHTegDaAhHQKmv4/7BO591fZQoaAZHQJPUtaPjn3doB03oA2gIR0CptmOeSSvDdX2UKGgGR0CRdo+6Ae7uaAdN6ANoCEdAqbcE1qFh5XV9lChoBkdAkNqCExqO92gHTegDaAhHQKm54KkVN6B1fZQoaAZHQJTNIwJw84hoB03oA2gIR0CpvDcyFfzCdX2UKGgGR0CVcmxL0z0paAdN6ANoCEdAqcKptcfNinV9lChoBkdAkRihesxO+WgHTegDaAhHQKnDRUH6dlN1fZQoaAZHQJQrVpoK2KFoB03oA2gIR0CpxhgCOmzjdX2UKGgGR0CTv3yc0+C9aAdN6ANoCEdAqch4caOxS3V9lChoBkdAkGect03fh2gHTegDaAhHQKnPElabF0h1fZQoaAZHQJeSByimEXdoB03oA2gIR0Cpz6/LDAJtdX2UKGgGR0CDbwbR4QjEaAdN6ANoCEdAqdKGthd+onV9lChoBkdAlS9rilzltGgHTegDaAhHQKnU5ijtXxR1fZQoaAZHQJIpBev6j35oB03oA2gIR0Cp23glv60qdX2UKGgGR0CTgO4LkS26aAdN6ANoCEdAqdwRTOxB3XV9lChoBkdAjtEKjzqbB2gHTegDaAhHQKne6QumJnB1fZQoaAZHQJDR6B7NSqFoB03oA2gIR0Cp4WoqTbFkdX2UKGgGR0CGKqSs8xKyaAdN6ANoCEdAqef3e1rqMXV9lChoBkdAkf8QdGRV62gHTegDaAhHQKnojiz9jwx1fZQoaAZHQJN/fVawD/5oB03oA2gIR0Cp620W2w3YdX2UKGgGR0CScwKwY+B6aAdN6ANoCEdAqe3MpZwGW3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.14", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3adb554164426ee2ca907b36e67a29403a7ce673912d37a6dfa179c05551d050
|
3 |
+
size 1114972
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1328.806300207763, "std_reward": 262.74131833146294, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-09-20T14:43:53.302244"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c89e78037411d1f40ccfabd7c02ab37cdb041b9152e927636f6be97264b7e068
|
3 |
+
size 2763
|