--- library_name: transformers license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-small-finetuned-kinetics tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-small-finetuned-kinetics-finetuned-judo results: [] --- # videomae-small-finetuned-kinetics-finetuned-judo This model is a fine-tuned version of [MCG-NJU/videomae-small-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-small-finetuned-kinetics) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6398 - Accuracy: 0.7027 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 190 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 1.0364 | 0.1053 | 20 | 1.0361 | 0.4324 | | 0.8371 | 1.1053 | 40 | 0.9787 | 0.5676 | | 0.6885 | 2.1053 | 60 | 0.9205 | 0.5676 | | 0.5484 | 3.1053 | 80 | 0.7844 | 0.6216 | | 0.452 | 4.1053 | 100 | 0.7905 | 0.5676 | | 0.4008 | 5.1053 | 120 | 0.7258 | 0.6216 | | 0.291 | 6.1053 | 140 | 0.7222 | 0.6486 | | 0.211 | 7.1053 | 160 | 0.6974 | 0.7027 | | 0.2003 | 8.1053 | 180 | 0.6377 | 0.7027 | | 0.2124 | 9.0526 | 190 | 0.6398 | 0.7027 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Tokenizers 0.21.0