--- library_name: transformers license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-small-finetuned-kinetics tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-small-finetuned-kinetics-finetuned-judo results: [] --- # videomae-small-finetuned-kinetics-finetuned-judo This model is a fine-tuned version of [MCG-NJU/videomae-small-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-small-finetuned-kinetics) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2644 - Accuracy: 0.8889 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 130 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.6846 | 0.1077 | 14 | 0.6309 | 0.6667 | | 0.5857 | 1.1077 | 28 | 0.5324 | 0.7037 | | 0.3921 | 2.1077 | 42 | 0.5325 | 0.6296 | | 0.3011 | 3.1077 | 56 | 0.4113 | 0.8889 | | 0.2184 | 4.1077 | 70 | 0.3408 | 0.8889 | | 0.1523 | 5.1077 | 84 | 0.3739 | 0.8519 | | 0.1197 | 6.1077 | 98 | 0.3697 | 0.7778 | | 0.0763 | 7.1077 | 112 | 0.2562 | 0.8889 | | 0.0724 | 8.1077 | 126 | 0.2623 | 0.8889 | | 0.0685 | 9.0308 | 130 | 0.2644 | 0.8889 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0