adalaw commited on
Commit
897c85c
·
verified ·
1 Parent(s): 359bc98

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. README.md +202 -0
  2. adapter_config.json +28 -0
  3. adapter_model.safetensors +3 -0
  4. all_results.json +8 -0
  5. checkpoint-1268/README.md +202 -0
  6. checkpoint-1268/adapter_config.json +28 -0
  7. checkpoint-1268/adapter_model.safetensors +3 -0
  8. checkpoint-1268/rng_state.pth +3 -0
  9. checkpoint-1268/scheduler.pt +3 -0
  10. checkpoint-1268/special_tokens_map.json +30 -0
  11. checkpoint-1268/tokenizer.json +0 -0
  12. checkpoint-1268/tokenizer_config.json +49 -0
  13. checkpoint-1268/trainer_state.json +0 -0
  14. checkpoint-1268/training_args.bin +3 -0
  15. checkpoint-1688/README.md +202 -0
  16. checkpoint-1688/adapter_config.json +28 -0
  17. checkpoint-1688/adapter_model.safetensors +3 -0
  18. checkpoint-1688/rng_state.pth +3 -0
  19. checkpoint-1688/scheduler.pt +3 -0
  20. checkpoint-1688/special_tokens_map.json +30 -0
  21. checkpoint-1688/tokenizer.json +0 -0
  22. checkpoint-1688/tokenizer_config.json +49 -0
  23. checkpoint-1688/trainer_state.json +0 -0
  24. checkpoint-1688/training_args.bin +3 -0
  25. checkpoint-422/README.md +202 -0
  26. checkpoint-422/adapter_config.json +28 -0
  27. checkpoint-422/adapter_model.safetensors +3 -0
  28. checkpoint-422/rng_state.pth +3 -0
  29. checkpoint-422/scheduler.pt +3 -0
  30. checkpoint-422/special_tokens_map.json +30 -0
  31. checkpoint-422/tokenizer.json +0 -0
  32. checkpoint-422/tokenizer_config.json +49 -0
  33. checkpoint-422/trainer_state.json +2553 -0
  34. checkpoint-422/training_args.bin +3 -0
  35. checkpoint-845/README.md +202 -0
  36. checkpoint-845/adapter_config.json +28 -0
  37. checkpoint-845/adapter_model.safetensors +3 -0
  38. checkpoint-845/rng_state.pth +3 -0
  39. checkpoint-845/scheduler.pt +3 -0
  40. checkpoint-845/special_tokens_map.json +30 -0
  41. checkpoint-845/tokenizer.json +0 -0
  42. checkpoint-845/tokenizer_config.json +49 -0
  43. checkpoint-845/trainer_state.json +0 -0
  44. checkpoint-845/training_args.bin +3 -0
  45. special_tokens_map.json +30 -0
  46. tokenizer.json +0 -0
  47. tokenizer_config.json +49 -0
  48. train.log +205 -0
  49. train_results.json +8 -0
  50. trainer_state.json +0 -0
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: meta-llama/Llama-2-7b-hf
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.7.1
adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/mnt/data_large/ccy/Llama-2-7b-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 512.0,
13
+ "lora_dropout": 0.1,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 128,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "q_proj",
23
+ "v_proj",
24
+ "o_proj",
25
+ "k_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1859cc173c38e0f05981b2c56c93ac699c344c6c820b3ffbed3fd66ec5824eab
3
+ size 536906096
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.99,
3
+ "train_loss": 0.919522538692889,
4
+ "train_runtime": 22845.2596,
5
+ "train_samples": 13533,
6
+ "train_samples_per_second": 2.37,
7
+ "train_steps_per_second": 0.074
8
+ }
checkpoint-1268/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: /mnt/data_large/ccy/Llama-2-7b-hf
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.7.1
checkpoint-1268/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/mnt/data_large/ccy/Llama-2-7b-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 512.0,
13
+ "lora_dropout": 0.1,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 128,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "q_proj",
23
+ "v_proj",
24
+ "o_proj",
25
+ "k_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-1268/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:918ba67576dfb282162108698fae489071f4de24dca6d4c751e20c11fd7b7b1d
3
+ size 536906096
checkpoint-1268/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63a38f753e10caea5d384c06fa52bda80c8fbb41366033e1e6eaa252fcbb80b0
3
+ size 14244
checkpoint-1268/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:065504389cd16f2d91e511461d61631d15f88f180be762e46ac01340795e4711
3
+ size 1064
checkpoint-1268/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<pad>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
checkpoint-1268/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1268/tokenizer_config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "32000": {
30
+ "content": "<pad>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ }
37
+ },
38
+ "bos_token": "<s>",
39
+ "clean_up_tokenization_spaces": false,
40
+ "eos_token": "</s>",
41
+ "legacy": false,
42
+ "model_max_length": 1000000000000000019884624838656,
43
+ "pad_token": "<pad>",
44
+ "padding_side": "right",
45
+ "sp_model_kwargs": {},
46
+ "tokenizer_class": "LlamaTokenizer",
47
+ "unk_token": "<unk>",
48
+ "use_default_system_prompt": false
49
+ }
checkpoint-1268/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1268/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5fd05faa475f5ea09145da8181858be9d5440fb2c8d86f380c3fb0a9ba1c01b
3
+ size 5048
checkpoint-1688/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: /mnt/data_large/ccy/Llama-2-7b-hf
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.7.1
checkpoint-1688/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/mnt/data_large/ccy/Llama-2-7b-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 512.0,
13
+ "lora_dropout": 0.1,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 128,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "q_proj",
23
+ "v_proj",
24
+ "o_proj",
25
+ "k_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-1688/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1859cc173c38e0f05981b2c56c93ac699c344c6c820b3ffbed3fd66ec5824eab
3
+ size 536906096
checkpoint-1688/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ed510da765d7528239c019f96e5b113502b9076e6877f36b1ef71dec9407ac7
3
+ size 14244
checkpoint-1688/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c7b46e58b36711ce4d0c11a744b6a236cdbd186ba673b47a6a0bf50ff772c1e
3
+ size 1064
checkpoint-1688/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<pad>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
checkpoint-1688/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1688/tokenizer_config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "32000": {
30
+ "content": "<pad>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ }
37
+ },
38
+ "bos_token": "<s>",
39
+ "clean_up_tokenization_spaces": false,
40
+ "eos_token": "</s>",
41
+ "legacy": false,
42
+ "model_max_length": 1000000000000000019884624838656,
43
+ "pad_token": "<pad>",
44
+ "padding_side": "right",
45
+ "sp_model_kwargs": {},
46
+ "tokenizer_class": "LlamaTokenizer",
47
+ "unk_token": "<unk>",
48
+ "use_default_system_prompt": false
49
+ }
checkpoint-1688/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1688/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5fd05faa475f5ea09145da8181858be9d5440fb2c8d86f380c3fb0a9ba1c01b
3
+ size 5048
checkpoint-422/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: /mnt/data_large/ccy/Llama-2-7b-hf
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.7.1
checkpoint-422/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/mnt/data_large/ccy/Llama-2-7b-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 512.0,
13
+ "lora_dropout": 0.1,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 128,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "q_proj",
23
+ "v_proj",
24
+ "o_proj",
25
+ "k_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-422/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:403dbafa3daffbd5348258f01a709f0e284bb3b658137302dbe544ab22683ed5
3
+ size 536906096
checkpoint-422/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4b9070fedd63094044d883c4d878793b52d473110b2a7fdd9a17fa930d5bb15
3
+ size 14244
checkpoint-422/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2fcea01ed6559d0ccfde485502a8166b43f9af46ad085b19f2b12bb8f79cb91e
3
+ size 1064
checkpoint-422/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<pad>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
checkpoint-422/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-422/tokenizer_config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "32000": {
30
+ "content": "<pad>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ }
37
+ },
38
+ "bos_token": "<s>",
39
+ "clean_up_tokenization_spaces": false,
40
+ "eos_token": "</s>",
41
+ "legacy": false,
42
+ "model_max_length": 1000000000000000019884624838656,
43
+ "pad_token": "<pad>",
44
+ "padding_side": "right",
45
+ "sp_model_kwargs": {},
46
+ "tokenizer_class": "LlamaTokenizer",
47
+ "unk_token": "<unk>",
48
+ "use_default_system_prompt": false
49
+ }
checkpoint-422/trainer_state.json ADDED
@@ -0,0 +1,2553 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9978570900761102,
5
+ "eval_steps": 500,
6
+ "global_step": 422,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 3.921568627450981e-07,
14
+ "loss": 2.8563,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "learning_rate": 7.843137254901962e-07,
20
+ "loss": 3.0208,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 1.1764705882352942e-06,
26
+ "loss": 4.0651,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 1.5686274509803923e-06,
32
+ "loss": 3.3154,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.01,
37
+ "learning_rate": 1.96078431372549e-06,
38
+ "loss": 3.9875,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.01,
43
+ "learning_rate": 2.3529411764705885e-06,
44
+ "loss": 9.4198,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.02,
49
+ "learning_rate": 2.7450980392156867e-06,
50
+ "loss": 3.4956,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.02,
55
+ "learning_rate": 3.1372549019607846e-06,
56
+ "loss": 3.646,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.02,
61
+ "learning_rate": 3.529411764705883e-06,
62
+ "loss": 2.9569,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.02,
67
+ "learning_rate": 3.92156862745098e-06,
68
+ "loss": 3.2712,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.03,
73
+ "learning_rate": 4.313725490196079e-06,
74
+ "loss": 4.4552,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.03,
79
+ "learning_rate": 4.705882352941177e-06,
80
+ "loss": 3.2141,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.03,
85
+ "learning_rate": 5.098039215686274e-06,
86
+ "loss": 2.8645,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.03,
91
+ "learning_rate": 5.4901960784313735e-06,
92
+ "loss": 2.9299,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.04,
97
+ "learning_rate": 5.882352941176471e-06,
98
+ "loss": 3.2333,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.04,
103
+ "learning_rate": 6.274509803921569e-06,
104
+ "loss": 3.3361,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.04,
109
+ "learning_rate": 6.666666666666667e-06,
110
+ "loss": 2.8326,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.04,
115
+ "learning_rate": 7.058823529411766e-06,
116
+ "loss": 5.9936,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.04,
121
+ "learning_rate": 7.450980392156863e-06,
122
+ "loss": 2.7551,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.05,
127
+ "learning_rate": 7.84313725490196e-06,
128
+ "loss": 2.3296,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.05,
133
+ "learning_rate": 8.23529411764706e-06,
134
+ "loss": 2.1901,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.05,
139
+ "learning_rate": 8.627450980392157e-06,
140
+ "loss": 1.7673,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.05,
145
+ "learning_rate": 9.019607843137256e-06,
146
+ "loss": 1.6721,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.06,
151
+ "learning_rate": 9.411764705882354e-06,
152
+ "loss": 1.7151,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.06,
157
+ "learning_rate": 9.803921568627451e-06,
158
+ "loss": 1.7576,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.06,
163
+ "learning_rate": 1.0196078431372549e-05,
164
+ "loss": 1.4461,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.06,
169
+ "learning_rate": 1.0588235294117648e-05,
170
+ "loss": 3.8357,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.07,
175
+ "learning_rate": 1.0980392156862747e-05,
176
+ "loss": 1.5292,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.07,
181
+ "learning_rate": 1.1372549019607844e-05,
182
+ "loss": 1.484,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.07,
187
+ "learning_rate": 1.1764705882352942e-05,
188
+ "loss": 1.2995,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.07,
193
+ "learning_rate": 1.215686274509804e-05,
194
+ "loss": 1.1459,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.08,
199
+ "learning_rate": 1.2549019607843138e-05,
200
+ "loss": 1.1017,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.08,
205
+ "learning_rate": 1.2941176470588238e-05,
206
+ "loss": 1.2681,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.08,
211
+ "learning_rate": 1.3333333333333333e-05,
212
+ "loss": 1.7749,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.08,
217
+ "learning_rate": 1.3725490196078432e-05,
218
+ "loss": 1.4039,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.09,
223
+ "learning_rate": 1.4117647058823532e-05,
224
+ "loss": 1.304,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.09,
229
+ "learning_rate": 1.4509803921568629e-05,
230
+ "loss": 1.1641,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.09,
235
+ "learning_rate": 1.4901960784313726e-05,
236
+ "loss": 1.0715,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.09,
241
+ "learning_rate": 1.5294117647058822e-05,
242
+ "loss": 1.0567,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.09,
247
+ "learning_rate": 1.568627450980392e-05,
248
+ "loss": 1.3111,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.1,
253
+ "learning_rate": 1.607843137254902e-05,
254
+ "loss": 1.4909,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.1,
259
+ "learning_rate": 1.647058823529412e-05,
260
+ "loss": 0.961,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.1,
265
+ "learning_rate": 1.686274509803922e-05,
266
+ "loss": 1.1519,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.1,
271
+ "learning_rate": 1.7254901960784314e-05,
272
+ "loss": 0.9403,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.11,
277
+ "learning_rate": 1.7647058823529414e-05,
278
+ "loss": 1.1603,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.11,
283
+ "learning_rate": 1.8039215686274513e-05,
284
+ "loss": 0.9909,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.11,
289
+ "learning_rate": 1.843137254901961e-05,
290
+ "loss": 1.0872,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.11,
295
+ "learning_rate": 1.8823529411764708e-05,
296
+ "loss": 1.0935,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.12,
301
+ "learning_rate": 1.9215686274509807e-05,
302
+ "loss": 1.2776,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.12,
307
+ "learning_rate": 1.9607843137254903e-05,
308
+ "loss": 1.0812,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.12,
313
+ "learning_rate": 2e-05,
314
+ "loss": 1.0436,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.12,
319
+ "learning_rate": 1.9987782529016497e-05,
320
+ "loss": 1.275,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.13,
325
+ "learning_rate": 1.997556505803299e-05,
326
+ "loss": 1.1309,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.13,
331
+ "learning_rate": 1.9963347587049484e-05,
332
+ "loss": 1.0838,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.13,
337
+ "learning_rate": 1.9951130116065975e-05,
338
+ "loss": 1.0861,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.13,
343
+ "learning_rate": 1.993891264508247e-05,
344
+ "loss": 0.9737,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.13,
349
+ "learning_rate": 1.9926695174098962e-05,
350
+ "loss": 0.9726,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.14,
355
+ "learning_rate": 1.9914477703115457e-05,
356
+ "loss": 1.1044,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.14,
361
+ "learning_rate": 1.9902260232131952e-05,
362
+ "loss": 1.2198,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.14,
367
+ "learning_rate": 1.9890042761148444e-05,
368
+ "loss": 1.2454,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.14,
373
+ "learning_rate": 1.987782529016494e-05,
374
+ "loss": 1.0945,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.15,
379
+ "learning_rate": 1.986560781918143e-05,
380
+ "loss": 1.2243,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.15,
385
+ "learning_rate": 1.9853390348197926e-05,
386
+ "loss": 1.0895,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.15,
391
+ "learning_rate": 1.9841172877214418e-05,
392
+ "loss": 1.3153,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.15,
397
+ "learning_rate": 1.9828955406230913e-05,
398
+ "loss": 1.3891,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.16,
403
+ "learning_rate": 1.9816737935247404e-05,
404
+ "loss": 1.1219,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.16,
409
+ "learning_rate": 1.98045204642639e-05,
410
+ "loss": 1.0493,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.16,
415
+ "learning_rate": 1.979230299328039e-05,
416
+ "loss": 1.0645,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.16,
421
+ "learning_rate": 1.9780085522296886e-05,
422
+ "loss": 1.3425,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.17,
427
+ "learning_rate": 1.9767868051313378e-05,
428
+ "loss": 1.8974,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.17,
433
+ "learning_rate": 1.9755650580329873e-05,
434
+ "loss": 1.0191,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.17,
439
+ "learning_rate": 1.9743433109346365e-05,
440
+ "loss": 1.1784,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.17,
445
+ "learning_rate": 1.973121563836286e-05,
446
+ "loss": 1.0353,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.17,
451
+ "learning_rate": 1.9718998167379355e-05,
452
+ "loss": 1.2755,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.18,
457
+ "learning_rate": 1.970678069639585e-05,
458
+ "loss": 0.9851,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.18,
463
+ "learning_rate": 1.9694563225412342e-05,
464
+ "loss": 1.2396,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.18,
469
+ "learning_rate": 1.9682345754428837e-05,
470
+ "loss": 1.2519,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.18,
475
+ "learning_rate": 1.967012828344533e-05,
476
+ "loss": 0.9313,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.19,
481
+ "learning_rate": 1.9657910812461824e-05,
482
+ "loss": 1.1745,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.19,
487
+ "learning_rate": 1.9645693341478315e-05,
488
+ "loss": 1.0521,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.19,
493
+ "learning_rate": 1.963347587049481e-05,
494
+ "loss": 0.9781,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.19,
499
+ "learning_rate": 1.9621258399511302e-05,
500
+ "loss": 1.0292,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.2,
505
+ "learning_rate": 1.9609040928527797e-05,
506
+ "loss": 0.851,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.2,
511
+ "learning_rate": 1.959682345754429e-05,
512
+ "loss": 1.1486,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.2,
517
+ "learning_rate": 1.9584605986560784e-05,
518
+ "loss": 1.0732,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.2,
523
+ "learning_rate": 1.9572388515577276e-05,
524
+ "loss": 1.0466,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.21,
529
+ "learning_rate": 1.956017104459377e-05,
530
+ "loss": 0.9275,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.21,
535
+ "learning_rate": 1.9547953573610263e-05,
536
+ "loss": 1.7509,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.21,
541
+ "learning_rate": 1.9535736102626758e-05,
542
+ "loss": 1.3038,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.21,
547
+ "learning_rate": 1.9523518631643253e-05,
548
+ "loss": 0.8664,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.22,
553
+ "learning_rate": 1.9511301160659744e-05,
554
+ "loss": 1.1555,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.22,
559
+ "learning_rate": 1.949908368967624e-05,
560
+ "loss": 1.1517,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.22,
565
+ "learning_rate": 1.948686621869273e-05,
566
+ "loss": 1.0223,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.22,
571
+ "learning_rate": 1.9474648747709226e-05,
572
+ "loss": 1.0649,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.22,
577
+ "learning_rate": 1.9462431276725718e-05,
578
+ "loss": 1.0147,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.23,
583
+ "learning_rate": 1.9450213805742213e-05,
584
+ "loss": 1.3624,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.23,
589
+ "learning_rate": 1.9437996334758705e-05,
590
+ "loss": 1.1294,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.23,
595
+ "learning_rate": 1.94257788637752e-05,
596
+ "loss": 1.1903,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.23,
601
+ "learning_rate": 1.941356139279169e-05,
602
+ "loss": 0.8732,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.24,
607
+ "learning_rate": 1.9401343921808187e-05,
608
+ "loss": 1.1793,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.24,
613
+ "learning_rate": 1.938912645082468e-05,
614
+ "loss": 0.9008,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.24,
619
+ "learning_rate": 1.9376908979841174e-05,
620
+ "loss": 1.2374,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.24,
625
+ "learning_rate": 1.936469150885767e-05,
626
+ "loss": 0.9163,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.25,
631
+ "learning_rate": 1.9352474037874164e-05,
632
+ "loss": 0.9702,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.25,
637
+ "learning_rate": 1.9340256566890655e-05,
638
+ "loss": 1.0813,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.25,
643
+ "learning_rate": 1.932803909590715e-05,
644
+ "loss": 1.1164,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.25,
649
+ "learning_rate": 1.9315821624923642e-05,
650
+ "loss": 0.9403,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.26,
655
+ "learning_rate": 1.9303604153940137e-05,
656
+ "loss": 1.074,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.26,
661
+ "learning_rate": 1.929138668295663e-05,
662
+ "loss": 1.1077,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.26,
667
+ "learning_rate": 1.9279169211973124e-05,
668
+ "loss": 1.0153,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.26,
673
+ "learning_rate": 1.9266951740989616e-05,
674
+ "loss": 1.0281,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.26,
679
+ "learning_rate": 1.925473427000611e-05,
680
+ "loss": 0.9075,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.27,
685
+ "learning_rate": 1.9242516799022603e-05,
686
+ "loss": 1.2191,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.27,
691
+ "learning_rate": 1.9230299328039098e-05,
692
+ "loss": 1.0649,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.27,
697
+ "learning_rate": 1.921808185705559e-05,
698
+ "loss": 0.9901,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.27,
703
+ "learning_rate": 1.9205864386072085e-05,
704
+ "loss": 1.0329,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.28,
709
+ "learning_rate": 1.9193646915088576e-05,
710
+ "loss": 1.4406,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.28,
715
+ "learning_rate": 1.918142944410507e-05,
716
+ "loss": 1.138,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.28,
721
+ "learning_rate": 1.9169211973121567e-05,
722
+ "loss": 1.1755,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.28,
727
+ "learning_rate": 1.9156994502138058e-05,
728
+ "loss": 0.9568,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.29,
733
+ "learning_rate": 1.9144777031154553e-05,
734
+ "loss": 1.0204,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.29,
739
+ "learning_rate": 1.913255956017105e-05,
740
+ "loss": 0.9391,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.29,
745
+ "learning_rate": 1.912034208918754e-05,
746
+ "loss": 1.109,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.29,
751
+ "learning_rate": 1.9108124618204035e-05,
752
+ "loss": 1.2183,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.3,
757
+ "learning_rate": 1.9095907147220527e-05,
758
+ "loss": 0.9377,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.3,
763
+ "learning_rate": 1.9083689676237022e-05,
764
+ "loss": 1.0865,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.3,
769
+ "learning_rate": 1.9071472205253514e-05,
770
+ "loss": 1.2078,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.3,
775
+ "learning_rate": 1.905925473427001e-05,
776
+ "loss": 1.0149,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.31,
781
+ "learning_rate": 1.90470372632865e-05,
782
+ "loss": 1.1191,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.31,
787
+ "learning_rate": 1.9034819792302996e-05,
788
+ "loss": 1.0933,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.31,
793
+ "learning_rate": 1.9022602321319487e-05,
794
+ "loss": 0.9312,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.31,
799
+ "learning_rate": 1.9010384850335982e-05,
800
+ "loss": 0.794,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.31,
805
+ "learning_rate": 1.8998167379352474e-05,
806
+ "loss": 0.8745,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.32,
811
+ "learning_rate": 1.898594990836897e-05,
812
+ "loss": 0.9092,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.32,
817
+ "learning_rate": 1.8973732437385464e-05,
818
+ "loss": 0.7504,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.32,
823
+ "learning_rate": 1.8961514966401956e-05,
824
+ "loss": 1.2165,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.32,
829
+ "learning_rate": 1.894929749541845e-05,
830
+ "loss": 0.9727,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.33,
835
+ "learning_rate": 1.8937080024434943e-05,
836
+ "loss": 1.0236,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.33,
841
+ "learning_rate": 1.8924862553451438e-05,
842
+ "loss": 0.9628,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.33,
847
+ "learning_rate": 1.891264508246793e-05,
848
+ "loss": 0.8762,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.33,
853
+ "learning_rate": 1.8900427611484425e-05,
854
+ "loss": 1.0712,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.34,
859
+ "learning_rate": 1.8888210140500916e-05,
860
+ "loss": 0.7999,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.34,
865
+ "learning_rate": 1.887599266951741e-05,
866
+ "loss": 0.9812,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.34,
871
+ "learning_rate": 1.8863775198533903e-05,
872
+ "loss": 1.8394,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.34,
877
+ "learning_rate": 1.88515577275504e-05,
878
+ "loss": 0.9033,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.35,
883
+ "learning_rate": 1.883934025656689e-05,
884
+ "loss": 0.9813,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.35,
889
+ "learning_rate": 1.8827122785583385e-05,
890
+ "loss": 0.7722,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.35,
895
+ "learning_rate": 1.8814905314599877e-05,
896
+ "loss": 0.9991,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.35,
901
+ "learning_rate": 1.8802687843616375e-05,
902
+ "loss": 0.9531,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 0.35,
907
+ "learning_rate": 1.8790470372632867e-05,
908
+ "loss": 0.9034,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 0.36,
913
+ "learning_rate": 1.8778252901649362e-05,
914
+ "loss": 0.8741,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 0.36,
919
+ "learning_rate": 1.8766035430665854e-05,
920
+ "loss": 1.1228,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 0.36,
925
+ "learning_rate": 1.875381795968235e-05,
926
+ "loss": 0.7849,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 0.36,
931
+ "learning_rate": 1.874160048869884e-05,
932
+ "loss": 0.9642,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 0.37,
937
+ "learning_rate": 1.8729383017715336e-05,
938
+ "loss": 1.0823,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 0.37,
943
+ "learning_rate": 1.8717165546731827e-05,
944
+ "loss": 1.2156,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 0.37,
949
+ "learning_rate": 1.8704948075748323e-05,
950
+ "loss": 1.4682,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 0.37,
955
+ "learning_rate": 1.8692730604764814e-05,
956
+ "loss": 1.2043,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 0.38,
961
+ "learning_rate": 1.868051313378131e-05,
962
+ "loss": 0.9802,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 0.38,
967
+ "learning_rate": 1.86682956627978e-05,
968
+ "loss": 1.1539,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 0.38,
973
+ "learning_rate": 1.8656078191814296e-05,
974
+ "loss": 1.1245,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 0.38,
979
+ "learning_rate": 1.8643860720830788e-05,
980
+ "loss": 1.099,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 0.39,
985
+ "learning_rate": 1.8631643249847283e-05,
986
+ "loss": 1.0272,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 0.39,
991
+ "learning_rate": 1.8619425778863778e-05,
992
+ "loss": 1.0072,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 0.39,
997
+ "learning_rate": 1.860720830788027e-05,
998
+ "loss": 1.0215,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 0.39,
1003
+ "learning_rate": 1.8594990836896765e-05,
1004
+ "loss": 1.0221,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 0.39,
1009
+ "learning_rate": 1.8582773365913257e-05,
1010
+ "loss": 1.0754,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 0.4,
1015
+ "learning_rate": 1.857055589492975e-05,
1016
+ "loss": 0.9724,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 0.4,
1021
+ "learning_rate": 1.8558338423946243e-05,
1022
+ "loss": 1.031,
1023
+ "step": 169
1024
+ },
1025
+ {
1026
+ "epoch": 0.4,
1027
+ "learning_rate": 1.854612095296274e-05,
1028
+ "loss": 1.157,
1029
+ "step": 170
1030
+ },
1031
+ {
1032
+ "epoch": 0.4,
1033
+ "learning_rate": 1.853390348197923e-05,
1034
+ "loss": 0.9819,
1035
+ "step": 171
1036
+ },
1037
+ {
1038
+ "epoch": 0.41,
1039
+ "learning_rate": 1.8521686010995725e-05,
1040
+ "loss": 1.1156,
1041
+ "step": 172
1042
+ },
1043
+ {
1044
+ "epoch": 0.41,
1045
+ "learning_rate": 1.850946854001222e-05,
1046
+ "loss": 1.0699,
1047
+ "step": 173
1048
+ },
1049
+ {
1050
+ "epoch": 0.41,
1051
+ "learning_rate": 1.8497251069028712e-05,
1052
+ "loss": 1.1092,
1053
+ "step": 174
1054
+ },
1055
+ {
1056
+ "epoch": 0.41,
1057
+ "learning_rate": 1.8485033598045207e-05,
1058
+ "loss": 1.0092,
1059
+ "step": 175
1060
+ },
1061
+ {
1062
+ "epoch": 0.42,
1063
+ "learning_rate": 1.84728161270617e-05,
1064
+ "loss": 1.0403,
1065
+ "step": 176
1066
+ },
1067
+ {
1068
+ "epoch": 0.42,
1069
+ "learning_rate": 1.8460598656078194e-05,
1070
+ "loss": 0.8809,
1071
+ "step": 177
1072
+ },
1073
+ {
1074
+ "epoch": 0.42,
1075
+ "learning_rate": 1.8448381185094686e-05,
1076
+ "loss": 1.0139,
1077
+ "step": 178
1078
+ },
1079
+ {
1080
+ "epoch": 0.42,
1081
+ "learning_rate": 1.843616371411118e-05,
1082
+ "loss": 1.0701,
1083
+ "step": 179
1084
+ },
1085
+ {
1086
+ "epoch": 0.43,
1087
+ "learning_rate": 1.8423946243127676e-05,
1088
+ "loss": 0.9199,
1089
+ "step": 180
1090
+ },
1091
+ {
1092
+ "epoch": 0.43,
1093
+ "learning_rate": 1.8411728772144168e-05,
1094
+ "loss": 0.8542,
1095
+ "step": 181
1096
+ },
1097
+ {
1098
+ "epoch": 0.43,
1099
+ "learning_rate": 1.8399511301160663e-05,
1100
+ "loss": 1.0369,
1101
+ "step": 182
1102
+ },
1103
+ {
1104
+ "epoch": 0.43,
1105
+ "learning_rate": 1.8387293830177154e-05,
1106
+ "loss": 0.9847,
1107
+ "step": 183
1108
+ },
1109
+ {
1110
+ "epoch": 0.44,
1111
+ "learning_rate": 1.837507635919365e-05,
1112
+ "loss": 0.8046,
1113
+ "step": 184
1114
+ },
1115
+ {
1116
+ "epoch": 0.44,
1117
+ "learning_rate": 1.836285888821014e-05,
1118
+ "loss": 1.2821,
1119
+ "step": 185
1120
+ },
1121
+ {
1122
+ "epoch": 0.44,
1123
+ "learning_rate": 1.8350641417226636e-05,
1124
+ "loss": 1.0127,
1125
+ "step": 186
1126
+ },
1127
+ {
1128
+ "epoch": 0.44,
1129
+ "learning_rate": 1.8338423946243128e-05,
1130
+ "loss": 0.8535,
1131
+ "step": 187
1132
+ },
1133
+ {
1134
+ "epoch": 0.44,
1135
+ "learning_rate": 1.8326206475259623e-05,
1136
+ "loss": 0.984,
1137
+ "step": 188
1138
+ },
1139
+ {
1140
+ "epoch": 0.45,
1141
+ "learning_rate": 1.8313989004276115e-05,
1142
+ "loss": 0.771,
1143
+ "step": 189
1144
+ },
1145
+ {
1146
+ "epoch": 0.45,
1147
+ "learning_rate": 1.830177153329261e-05,
1148
+ "loss": 2.1482,
1149
+ "step": 190
1150
+ },
1151
+ {
1152
+ "epoch": 0.45,
1153
+ "learning_rate": 1.82895540623091e-05,
1154
+ "loss": 0.7799,
1155
+ "step": 191
1156
+ },
1157
+ {
1158
+ "epoch": 0.45,
1159
+ "learning_rate": 1.8277336591325597e-05,
1160
+ "loss": 1.1474,
1161
+ "step": 192
1162
+ },
1163
+ {
1164
+ "epoch": 0.46,
1165
+ "learning_rate": 1.826511912034209e-05,
1166
+ "loss": 1.0967,
1167
+ "step": 193
1168
+ },
1169
+ {
1170
+ "epoch": 0.46,
1171
+ "learning_rate": 1.8252901649358587e-05,
1172
+ "loss": 0.8824,
1173
+ "step": 194
1174
+ },
1175
+ {
1176
+ "epoch": 0.46,
1177
+ "learning_rate": 1.824068417837508e-05,
1178
+ "loss": 0.9202,
1179
+ "step": 195
1180
+ },
1181
+ {
1182
+ "epoch": 0.46,
1183
+ "learning_rate": 1.8228466707391574e-05,
1184
+ "loss": 0.8055,
1185
+ "step": 196
1186
+ },
1187
+ {
1188
+ "epoch": 0.47,
1189
+ "learning_rate": 1.8216249236408065e-05,
1190
+ "loss": 0.7309,
1191
+ "step": 197
1192
+ },
1193
+ {
1194
+ "epoch": 0.47,
1195
+ "learning_rate": 1.820403176542456e-05,
1196
+ "loss": 1.1121,
1197
+ "step": 198
1198
+ },
1199
+ {
1200
+ "epoch": 0.47,
1201
+ "learning_rate": 1.8191814294441052e-05,
1202
+ "loss": 1.5694,
1203
+ "step": 199
1204
+ },
1205
+ {
1206
+ "epoch": 0.47,
1207
+ "learning_rate": 1.8179596823457547e-05,
1208
+ "loss": 1.2677,
1209
+ "step": 200
1210
+ },
1211
+ {
1212
+ "epoch": 0.48,
1213
+ "learning_rate": 1.816737935247404e-05,
1214
+ "loss": 1.1242,
1215
+ "step": 201
1216
+ },
1217
+ {
1218
+ "epoch": 0.48,
1219
+ "learning_rate": 1.8155161881490534e-05,
1220
+ "loss": 0.8419,
1221
+ "step": 202
1222
+ },
1223
+ {
1224
+ "epoch": 0.48,
1225
+ "learning_rate": 1.8142944410507026e-05,
1226
+ "loss": 1.1399,
1227
+ "step": 203
1228
+ },
1229
+ {
1230
+ "epoch": 0.48,
1231
+ "learning_rate": 1.813072693952352e-05,
1232
+ "loss": 0.7964,
1233
+ "step": 204
1234
+ },
1235
+ {
1236
+ "epoch": 0.48,
1237
+ "learning_rate": 1.8118509468540013e-05,
1238
+ "loss": 0.9321,
1239
+ "step": 205
1240
+ },
1241
+ {
1242
+ "epoch": 0.49,
1243
+ "learning_rate": 1.8106291997556508e-05,
1244
+ "loss": 0.8461,
1245
+ "step": 206
1246
+ },
1247
+ {
1248
+ "epoch": 0.49,
1249
+ "learning_rate": 1.8094074526573e-05,
1250
+ "loss": 1.0457,
1251
+ "step": 207
1252
+ },
1253
+ {
1254
+ "epoch": 0.49,
1255
+ "learning_rate": 1.8081857055589494e-05,
1256
+ "loss": 1.085,
1257
+ "step": 208
1258
+ },
1259
+ {
1260
+ "epoch": 0.49,
1261
+ "learning_rate": 1.806963958460599e-05,
1262
+ "loss": 0.9105,
1263
+ "step": 209
1264
+ },
1265
+ {
1266
+ "epoch": 0.5,
1267
+ "learning_rate": 1.805742211362248e-05,
1268
+ "loss": 0.9143,
1269
+ "step": 210
1270
+ },
1271
+ {
1272
+ "epoch": 0.5,
1273
+ "learning_rate": 1.8045204642638976e-05,
1274
+ "loss": 1.0978,
1275
+ "step": 211
1276
+ },
1277
+ {
1278
+ "epoch": 0.5,
1279
+ "learning_rate": 1.8032987171655468e-05,
1280
+ "loss": 0.9884,
1281
+ "step": 212
1282
+ },
1283
+ {
1284
+ "epoch": 0.5,
1285
+ "learning_rate": 1.8020769700671963e-05,
1286
+ "loss": 1.0179,
1287
+ "step": 213
1288
+ },
1289
+ {
1290
+ "epoch": 0.51,
1291
+ "learning_rate": 1.8008552229688455e-05,
1292
+ "loss": 1.2135,
1293
+ "step": 214
1294
+ },
1295
+ {
1296
+ "epoch": 0.51,
1297
+ "learning_rate": 1.799633475870495e-05,
1298
+ "loss": 0.9051,
1299
+ "step": 215
1300
+ },
1301
+ {
1302
+ "epoch": 0.51,
1303
+ "learning_rate": 1.7984117287721442e-05,
1304
+ "loss": 0.8954,
1305
+ "step": 216
1306
+ },
1307
+ {
1308
+ "epoch": 0.51,
1309
+ "learning_rate": 1.7971899816737937e-05,
1310
+ "loss": 1.1429,
1311
+ "step": 217
1312
+ },
1313
+ {
1314
+ "epoch": 0.52,
1315
+ "learning_rate": 1.795968234575443e-05,
1316
+ "loss": 1.0803,
1317
+ "step": 218
1318
+ },
1319
+ {
1320
+ "epoch": 0.52,
1321
+ "learning_rate": 1.7947464874770924e-05,
1322
+ "loss": 1.0558,
1323
+ "step": 219
1324
+ },
1325
+ {
1326
+ "epoch": 0.52,
1327
+ "learning_rate": 1.7935247403787415e-05,
1328
+ "loss": 1.0904,
1329
+ "step": 220
1330
+ },
1331
+ {
1332
+ "epoch": 0.52,
1333
+ "learning_rate": 1.792302993280391e-05,
1334
+ "loss": 1.0909,
1335
+ "step": 221
1336
+ },
1337
+ {
1338
+ "epoch": 0.52,
1339
+ "learning_rate": 1.7910812461820402e-05,
1340
+ "loss": 1.1515,
1341
+ "step": 222
1342
+ },
1343
+ {
1344
+ "epoch": 0.53,
1345
+ "learning_rate": 1.7898594990836897e-05,
1346
+ "loss": 1.0393,
1347
+ "step": 223
1348
+ },
1349
+ {
1350
+ "epoch": 0.53,
1351
+ "learning_rate": 1.7886377519853392e-05,
1352
+ "loss": 1.0072,
1353
+ "step": 224
1354
+ },
1355
+ {
1356
+ "epoch": 0.53,
1357
+ "learning_rate": 1.7874160048869887e-05,
1358
+ "loss": 0.8387,
1359
+ "step": 225
1360
+ },
1361
+ {
1362
+ "epoch": 0.53,
1363
+ "learning_rate": 1.786194257788638e-05,
1364
+ "loss": 0.8908,
1365
+ "step": 226
1366
+ },
1367
+ {
1368
+ "epoch": 0.54,
1369
+ "learning_rate": 1.7849725106902874e-05,
1370
+ "loss": 0.875,
1371
+ "step": 227
1372
+ },
1373
+ {
1374
+ "epoch": 0.54,
1375
+ "learning_rate": 1.7837507635919366e-05,
1376
+ "loss": 1.0477,
1377
+ "step": 228
1378
+ },
1379
+ {
1380
+ "epoch": 0.54,
1381
+ "learning_rate": 1.782529016493586e-05,
1382
+ "loss": 1.0117,
1383
+ "step": 229
1384
+ },
1385
+ {
1386
+ "epoch": 0.54,
1387
+ "learning_rate": 1.7813072693952353e-05,
1388
+ "loss": 1.1684,
1389
+ "step": 230
1390
+ },
1391
+ {
1392
+ "epoch": 0.55,
1393
+ "learning_rate": 1.7800855222968848e-05,
1394
+ "loss": 1.1475,
1395
+ "step": 231
1396
+ },
1397
+ {
1398
+ "epoch": 0.55,
1399
+ "learning_rate": 1.778863775198534e-05,
1400
+ "loss": 1.2069,
1401
+ "step": 232
1402
+ },
1403
+ {
1404
+ "epoch": 0.55,
1405
+ "learning_rate": 1.7776420281001835e-05,
1406
+ "loss": 1.1107,
1407
+ "step": 233
1408
+ },
1409
+ {
1410
+ "epoch": 0.55,
1411
+ "learning_rate": 1.7764202810018326e-05,
1412
+ "loss": 0.9738,
1413
+ "step": 234
1414
+ },
1415
+ {
1416
+ "epoch": 0.56,
1417
+ "learning_rate": 1.775198533903482e-05,
1418
+ "loss": 0.8838,
1419
+ "step": 235
1420
+ },
1421
+ {
1422
+ "epoch": 0.56,
1423
+ "learning_rate": 1.7739767868051313e-05,
1424
+ "loss": 1.0103,
1425
+ "step": 236
1426
+ },
1427
+ {
1428
+ "epoch": 0.56,
1429
+ "learning_rate": 1.7727550397067808e-05,
1430
+ "loss": 0.9279,
1431
+ "step": 237
1432
+ },
1433
+ {
1434
+ "epoch": 0.56,
1435
+ "learning_rate": 1.77153329260843e-05,
1436
+ "loss": 0.9682,
1437
+ "step": 238
1438
+ },
1439
+ {
1440
+ "epoch": 0.57,
1441
+ "learning_rate": 1.7703115455100795e-05,
1442
+ "loss": 1.2049,
1443
+ "step": 239
1444
+ },
1445
+ {
1446
+ "epoch": 0.57,
1447
+ "learning_rate": 1.769089798411729e-05,
1448
+ "loss": 1.0387,
1449
+ "step": 240
1450
+ },
1451
+ {
1452
+ "epoch": 0.57,
1453
+ "learning_rate": 1.7678680513133785e-05,
1454
+ "loss": 0.9754,
1455
+ "step": 241
1456
+ },
1457
+ {
1458
+ "epoch": 0.57,
1459
+ "learning_rate": 1.7666463042150277e-05,
1460
+ "loss": 1.0202,
1461
+ "step": 242
1462
+ },
1463
+ {
1464
+ "epoch": 0.57,
1465
+ "learning_rate": 1.7654245571166772e-05,
1466
+ "loss": 1.0224,
1467
+ "step": 243
1468
+ },
1469
+ {
1470
+ "epoch": 0.58,
1471
+ "learning_rate": 1.7642028100183264e-05,
1472
+ "loss": 0.8577,
1473
+ "step": 244
1474
+ },
1475
+ {
1476
+ "epoch": 0.58,
1477
+ "learning_rate": 1.762981062919976e-05,
1478
+ "loss": 0.9112,
1479
+ "step": 245
1480
+ },
1481
+ {
1482
+ "epoch": 0.58,
1483
+ "learning_rate": 1.761759315821625e-05,
1484
+ "loss": 0.9395,
1485
+ "step": 246
1486
+ },
1487
+ {
1488
+ "epoch": 0.58,
1489
+ "learning_rate": 1.7605375687232746e-05,
1490
+ "loss": 1.1198,
1491
+ "step": 247
1492
+ },
1493
+ {
1494
+ "epoch": 0.59,
1495
+ "learning_rate": 1.7593158216249237e-05,
1496
+ "loss": 1.4934,
1497
+ "step": 248
1498
+ },
1499
+ {
1500
+ "epoch": 0.59,
1501
+ "learning_rate": 1.7580940745265732e-05,
1502
+ "loss": 1.0408,
1503
+ "step": 249
1504
+ },
1505
+ {
1506
+ "epoch": 0.59,
1507
+ "learning_rate": 1.7568723274282224e-05,
1508
+ "loss": 0.9475,
1509
+ "step": 250
1510
+ },
1511
+ {
1512
+ "epoch": 0.59,
1513
+ "learning_rate": 1.755650580329872e-05,
1514
+ "loss": 1.1368,
1515
+ "step": 251
1516
+ },
1517
+ {
1518
+ "epoch": 0.6,
1519
+ "learning_rate": 1.754428833231521e-05,
1520
+ "loss": 0.9984,
1521
+ "step": 252
1522
+ },
1523
+ {
1524
+ "epoch": 0.6,
1525
+ "learning_rate": 1.7532070861331706e-05,
1526
+ "loss": 1.1552,
1527
+ "step": 253
1528
+ },
1529
+ {
1530
+ "epoch": 0.6,
1531
+ "learning_rate": 1.75198533903482e-05,
1532
+ "loss": 1.0785,
1533
+ "step": 254
1534
+ },
1535
+ {
1536
+ "epoch": 0.6,
1537
+ "learning_rate": 1.7507635919364693e-05,
1538
+ "loss": 0.8089,
1539
+ "step": 255
1540
+ },
1541
+ {
1542
+ "epoch": 0.61,
1543
+ "learning_rate": 1.7495418448381188e-05,
1544
+ "loss": 1.0439,
1545
+ "step": 256
1546
+ },
1547
+ {
1548
+ "epoch": 0.61,
1549
+ "learning_rate": 1.748320097739768e-05,
1550
+ "loss": 0.7603,
1551
+ "step": 257
1552
+ },
1553
+ {
1554
+ "epoch": 0.61,
1555
+ "learning_rate": 1.7470983506414175e-05,
1556
+ "loss": 0.8235,
1557
+ "step": 258
1558
+ },
1559
+ {
1560
+ "epoch": 0.61,
1561
+ "learning_rate": 1.7458766035430666e-05,
1562
+ "loss": 1.7352,
1563
+ "step": 259
1564
+ },
1565
+ {
1566
+ "epoch": 0.61,
1567
+ "learning_rate": 1.744654856444716e-05,
1568
+ "loss": 0.9731,
1569
+ "step": 260
1570
+ },
1571
+ {
1572
+ "epoch": 0.62,
1573
+ "learning_rate": 1.7434331093463653e-05,
1574
+ "loss": 0.8848,
1575
+ "step": 261
1576
+ },
1577
+ {
1578
+ "epoch": 0.62,
1579
+ "learning_rate": 1.742211362248015e-05,
1580
+ "loss": 0.8874,
1581
+ "step": 262
1582
+ },
1583
+ {
1584
+ "epoch": 0.62,
1585
+ "learning_rate": 1.740989615149664e-05,
1586
+ "loss": 1.0125,
1587
+ "step": 263
1588
+ },
1589
+ {
1590
+ "epoch": 0.62,
1591
+ "learning_rate": 1.7397678680513135e-05,
1592
+ "loss": 1.0552,
1593
+ "step": 264
1594
+ },
1595
+ {
1596
+ "epoch": 0.63,
1597
+ "learning_rate": 1.7385461209529627e-05,
1598
+ "loss": 0.9488,
1599
+ "step": 265
1600
+ },
1601
+ {
1602
+ "epoch": 0.63,
1603
+ "learning_rate": 1.7373243738546122e-05,
1604
+ "loss": 0.794,
1605
+ "step": 266
1606
+ },
1607
+ {
1608
+ "epoch": 0.63,
1609
+ "learning_rate": 1.7361026267562614e-05,
1610
+ "loss": 1.0277,
1611
+ "step": 267
1612
+ },
1613
+ {
1614
+ "epoch": 0.63,
1615
+ "learning_rate": 1.734880879657911e-05,
1616
+ "loss": 0.835,
1617
+ "step": 268
1618
+ },
1619
+ {
1620
+ "epoch": 0.64,
1621
+ "learning_rate": 1.7336591325595604e-05,
1622
+ "loss": 1.2321,
1623
+ "step": 269
1624
+ },
1625
+ {
1626
+ "epoch": 0.64,
1627
+ "learning_rate": 1.73243738546121e-05,
1628
+ "loss": 0.9804,
1629
+ "step": 270
1630
+ },
1631
+ {
1632
+ "epoch": 0.64,
1633
+ "learning_rate": 1.731215638362859e-05,
1634
+ "loss": 1.1228,
1635
+ "step": 271
1636
+ },
1637
+ {
1638
+ "epoch": 0.64,
1639
+ "learning_rate": 1.7299938912645086e-05,
1640
+ "loss": 1.1392,
1641
+ "step": 272
1642
+ },
1643
+ {
1644
+ "epoch": 0.65,
1645
+ "learning_rate": 1.7287721441661577e-05,
1646
+ "loss": 0.8711,
1647
+ "step": 273
1648
+ },
1649
+ {
1650
+ "epoch": 0.65,
1651
+ "learning_rate": 1.7275503970678073e-05,
1652
+ "loss": 0.9201,
1653
+ "step": 274
1654
+ },
1655
+ {
1656
+ "epoch": 0.65,
1657
+ "learning_rate": 1.7263286499694564e-05,
1658
+ "loss": 1.008,
1659
+ "step": 275
1660
+ },
1661
+ {
1662
+ "epoch": 0.65,
1663
+ "learning_rate": 1.725106902871106e-05,
1664
+ "loss": 1.0344,
1665
+ "step": 276
1666
+ },
1667
+ {
1668
+ "epoch": 0.65,
1669
+ "learning_rate": 1.723885155772755e-05,
1670
+ "loss": 0.9427,
1671
+ "step": 277
1672
+ },
1673
+ {
1674
+ "epoch": 0.66,
1675
+ "learning_rate": 1.7226634086744046e-05,
1676
+ "loss": 0.8963,
1677
+ "step": 278
1678
+ },
1679
+ {
1680
+ "epoch": 0.66,
1681
+ "learning_rate": 1.7214416615760538e-05,
1682
+ "loss": 1.3487,
1683
+ "step": 279
1684
+ },
1685
+ {
1686
+ "epoch": 0.66,
1687
+ "learning_rate": 1.7202199144777033e-05,
1688
+ "loss": 1.0002,
1689
+ "step": 280
1690
+ },
1691
+ {
1692
+ "epoch": 0.66,
1693
+ "learning_rate": 1.7189981673793525e-05,
1694
+ "loss": 0.961,
1695
+ "step": 281
1696
+ },
1697
+ {
1698
+ "epoch": 0.67,
1699
+ "learning_rate": 1.717776420281002e-05,
1700
+ "loss": 0.9015,
1701
+ "step": 282
1702
+ },
1703
+ {
1704
+ "epoch": 0.67,
1705
+ "learning_rate": 1.716554673182651e-05,
1706
+ "loss": 0.9172,
1707
+ "step": 283
1708
+ },
1709
+ {
1710
+ "epoch": 0.67,
1711
+ "learning_rate": 1.7153329260843007e-05,
1712
+ "loss": 0.9849,
1713
+ "step": 284
1714
+ },
1715
+ {
1716
+ "epoch": 0.67,
1717
+ "learning_rate": 1.71411117898595e-05,
1718
+ "loss": 0.9166,
1719
+ "step": 285
1720
+ },
1721
+ {
1722
+ "epoch": 0.68,
1723
+ "learning_rate": 1.7128894318875993e-05,
1724
+ "loss": 1.0685,
1725
+ "step": 286
1726
+ },
1727
+ {
1728
+ "epoch": 0.68,
1729
+ "learning_rate": 1.711667684789249e-05,
1730
+ "loss": 1.0196,
1731
+ "step": 287
1732
+ },
1733
+ {
1734
+ "epoch": 0.68,
1735
+ "learning_rate": 1.710445937690898e-05,
1736
+ "loss": 0.8409,
1737
+ "step": 288
1738
+ },
1739
+ {
1740
+ "epoch": 0.68,
1741
+ "learning_rate": 1.7092241905925475e-05,
1742
+ "loss": 0.9327,
1743
+ "step": 289
1744
+ },
1745
+ {
1746
+ "epoch": 0.69,
1747
+ "learning_rate": 1.7080024434941967e-05,
1748
+ "loss": 0.8675,
1749
+ "step": 290
1750
+ },
1751
+ {
1752
+ "epoch": 0.69,
1753
+ "learning_rate": 1.7067806963958462e-05,
1754
+ "loss": 1.1109,
1755
+ "step": 291
1756
+ },
1757
+ {
1758
+ "epoch": 0.69,
1759
+ "learning_rate": 1.7055589492974954e-05,
1760
+ "loss": 0.8427,
1761
+ "step": 292
1762
+ },
1763
+ {
1764
+ "epoch": 0.69,
1765
+ "learning_rate": 1.704337202199145e-05,
1766
+ "loss": 1.1322,
1767
+ "step": 293
1768
+ },
1769
+ {
1770
+ "epoch": 0.7,
1771
+ "learning_rate": 1.7031154551007944e-05,
1772
+ "loss": 0.9094,
1773
+ "step": 294
1774
+ },
1775
+ {
1776
+ "epoch": 0.7,
1777
+ "learning_rate": 1.7018937080024436e-05,
1778
+ "loss": 1.1168,
1779
+ "step": 295
1780
+ },
1781
+ {
1782
+ "epoch": 0.7,
1783
+ "learning_rate": 1.700671960904093e-05,
1784
+ "loss": 0.9982,
1785
+ "step": 296
1786
+ },
1787
+ {
1788
+ "epoch": 0.7,
1789
+ "learning_rate": 1.6994502138057422e-05,
1790
+ "loss": 0.7812,
1791
+ "step": 297
1792
+ },
1793
+ {
1794
+ "epoch": 0.7,
1795
+ "learning_rate": 1.6982284667073918e-05,
1796
+ "loss": 0.8858,
1797
+ "step": 298
1798
+ },
1799
+ {
1800
+ "epoch": 0.71,
1801
+ "learning_rate": 1.6970067196090413e-05,
1802
+ "loss": 0.9693,
1803
+ "step": 299
1804
+ },
1805
+ {
1806
+ "epoch": 0.71,
1807
+ "learning_rate": 1.6957849725106904e-05,
1808
+ "loss": 0.9097,
1809
+ "step": 300
1810
+ },
1811
+ {
1812
+ "epoch": 0.71,
1813
+ "learning_rate": 1.69456322541234e-05,
1814
+ "loss": 0.9178,
1815
+ "step": 301
1816
+ },
1817
+ {
1818
+ "epoch": 0.71,
1819
+ "learning_rate": 1.693341478313989e-05,
1820
+ "loss": 1.0581,
1821
+ "step": 302
1822
+ },
1823
+ {
1824
+ "epoch": 0.72,
1825
+ "learning_rate": 1.6921197312156386e-05,
1826
+ "loss": 1.1521,
1827
+ "step": 303
1828
+ },
1829
+ {
1830
+ "epoch": 0.72,
1831
+ "learning_rate": 1.6908979841172878e-05,
1832
+ "loss": 1.065,
1833
+ "step": 304
1834
+ },
1835
+ {
1836
+ "epoch": 0.72,
1837
+ "learning_rate": 1.6896762370189373e-05,
1838
+ "loss": 0.8954,
1839
+ "step": 305
1840
+ },
1841
+ {
1842
+ "epoch": 0.72,
1843
+ "learning_rate": 1.6884544899205865e-05,
1844
+ "loss": 0.7037,
1845
+ "step": 306
1846
+ },
1847
+ {
1848
+ "epoch": 0.73,
1849
+ "learning_rate": 1.687232742822236e-05,
1850
+ "loss": 0.9347,
1851
+ "step": 307
1852
+ },
1853
+ {
1854
+ "epoch": 0.73,
1855
+ "learning_rate": 1.686010995723885e-05,
1856
+ "loss": 0.9681,
1857
+ "step": 308
1858
+ },
1859
+ {
1860
+ "epoch": 0.73,
1861
+ "learning_rate": 1.6847892486255347e-05,
1862
+ "loss": 0.8554,
1863
+ "step": 309
1864
+ },
1865
+ {
1866
+ "epoch": 0.73,
1867
+ "learning_rate": 1.683567501527184e-05,
1868
+ "loss": 0.8793,
1869
+ "step": 310
1870
+ },
1871
+ {
1872
+ "epoch": 0.74,
1873
+ "learning_rate": 1.6823457544288334e-05,
1874
+ "loss": 0.8881,
1875
+ "step": 311
1876
+ },
1877
+ {
1878
+ "epoch": 0.74,
1879
+ "learning_rate": 1.6811240073304825e-05,
1880
+ "loss": 0.9284,
1881
+ "step": 312
1882
+ },
1883
+ {
1884
+ "epoch": 0.74,
1885
+ "learning_rate": 1.679902260232132e-05,
1886
+ "loss": 0.9632,
1887
+ "step": 313
1888
+ },
1889
+ {
1890
+ "epoch": 0.74,
1891
+ "learning_rate": 1.6786805131337815e-05,
1892
+ "loss": 1.0815,
1893
+ "step": 314
1894
+ },
1895
+ {
1896
+ "epoch": 0.74,
1897
+ "learning_rate": 1.677458766035431e-05,
1898
+ "loss": 0.9314,
1899
+ "step": 315
1900
+ },
1901
+ {
1902
+ "epoch": 0.75,
1903
+ "learning_rate": 1.6762370189370802e-05,
1904
+ "loss": 0.7965,
1905
+ "step": 316
1906
+ },
1907
+ {
1908
+ "epoch": 0.75,
1909
+ "learning_rate": 1.6750152718387297e-05,
1910
+ "loss": 0.8365,
1911
+ "step": 317
1912
+ },
1913
+ {
1914
+ "epoch": 0.75,
1915
+ "learning_rate": 1.673793524740379e-05,
1916
+ "loss": 1.2019,
1917
+ "step": 318
1918
+ },
1919
+ {
1920
+ "epoch": 0.75,
1921
+ "learning_rate": 1.6725717776420284e-05,
1922
+ "loss": 0.9525,
1923
+ "step": 319
1924
+ },
1925
+ {
1926
+ "epoch": 0.76,
1927
+ "learning_rate": 1.6713500305436776e-05,
1928
+ "loss": 0.7911,
1929
+ "step": 320
1930
+ },
1931
+ {
1932
+ "epoch": 0.76,
1933
+ "learning_rate": 1.670128283445327e-05,
1934
+ "loss": 0.9614,
1935
+ "step": 321
1936
+ },
1937
+ {
1938
+ "epoch": 0.76,
1939
+ "learning_rate": 1.6689065363469763e-05,
1940
+ "loss": 1.0212,
1941
+ "step": 322
1942
+ },
1943
+ {
1944
+ "epoch": 0.76,
1945
+ "learning_rate": 1.6676847892486258e-05,
1946
+ "loss": 1.128,
1947
+ "step": 323
1948
+ },
1949
+ {
1950
+ "epoch": 0.77,
1951
+ "learning_rate": 1.666463042150275e-05,
1952
+ "loss": 0.9668,
1953
+ "step": 324
1954
+ },
1955
+ {
1956
+ "epoch": 0.77,
1957
+ "learning_rate": 1.6652412950519245e-05,
1958
+ "loss": 0.9095,
1959
+ "step": 325
1960
+ },
1961
+ {
1962
+ "epoch": 0.77,
1963
+ "learning_rate": 1.6640195479535736e-05,
1964
+ "loss": 0.8985,
1965
+ "step": 326
1966
+ },
1967
+ {
1968
+ "epoch": 0.77,
1969
+ "learning_rate": 1.662797800855223e-05,
1970
+ "loss": 0.8876,
1971
+ "step": 327
1972
+ },
1973
+ {
1974
+ "epoch": 0.78,
1975
+ "learning_rate": 1.6615760537568723e-05,
1976
+ "loss": 0.9104,
1977
+ "step": 328
1978
+ },
1979
+ {
1980
+ "epoch": 0.78,
1981
+ "learning_rate": 1.6603543066585218e-05,
1982
+ "loss": 0.9719,
1983
+ "step": 329
1984
+ },
1985
+ {
1986
+ "epoch": 0.78,
1987
+ "learning_rate": 1.6591325595601713e-05,
1988
+ "loss": 1.2485,
1989
+ "step": 330
1990
+ },
1991
+ {
1992
+ "epoch": 0.78,
1993
+ "learning_rate": 1.6579108124618205e-05,
1994
+ "loss": 0.8247,
1995
+ "step": 331
1996
+ },
1997
+ {
1998
+ "epoch": 0.79,
1999
+ "learning_rate": 1.65668906536347e-05,
2000
+ "loss": 1.1209,
2001
+ "step": 332
2002
+ },
2003
+ {
2004
+ "epoch": 0.79,
2005
+ "learning_rate": 1.6554673182651192e-05,
2006
+ "loss": 1.0325,
2007
+ "step": 333
2008
+ },
2009
+ {
2010
+ "epoch": 0.79,
2011
+ "learning_rate": 1.6542455711667687e-05,
2012
+ "loss": 1.0139,
2013
+ "step": 334
2014
+ },
2015
+ {
2016
+ "epoch": 0.79,
2017
+ "learning_rate": 1.653023824068418e-05,
2018
+ "loss": 1.0233,
2019
+ "step": 335
2020
+ },
2021
+ {
2022
+ "epoch": 0.79,
2023
+ "learning_rate": 1.6518020769700674e-05,
2024
+ "loss": 0.8545,
2025
+ "step": 336
2026
+ },
2027
+ {
2028
+ "epoch": 0.8,
2029
+ "learning_rate": 1.6505803298717165e-05,
2030
+ "loss": 1.2186,
2031
+ "step": 337
2032
+ },
2033
+ {
2034
+ "epoch": 0.8,
2035
+ "learning_rate": 1.649358582773366e-05,
2036
+ "loss": 0.9952,
2037
+ "step": 338
2038
+ },
2039
+ {
2040
+ "epoch": 0.8,
2041
+ "learning_rate": 1.6481368356750152e-05,
2042
+ "loss": 1.2843,
2043
+ "step": 339
2044
+ },
2045
+ {
2046
+ "epoch": 0.8,
2047
+ "learning_rate": 1.6469150885766647e-05,
2048
+ "loss": 1.2914,
2049
+ "step": 340
2050
+ },
2051
+ {
2052
+ "epoch": 0.81,
2053
+ "learning_rate": 1.645693341478314e-05,
2054
+ "loss": 0.7621,
2055
+ "step": 341
2056
+ },
2057
+ {
2058
+ "epoch": 0.81,
2059
+ "learning_rate": 1.6444715943799634e-05,
2060
+ "loss": 1.0924,
2061
+ "step": 342
2062
+ },
2063
+ {
2064
+ "epoch": 0.81,
2065
+ "learning_rate": 1.6432498472816126e-05,
2066
+ "loss": 1.1418,
2067
+ "step": 343
2068
+ },
2069
+ {
2070
+ "epoch": 0.81,
2071
+ "learning_rate": 1.6420281001832624e-05,
2072
+ "loss": 0.9116,
2073
+ "step": 344
2074
+ },
2075
+ {
2076
+ "epoch": 0.82,
2077
+ "learning_rate": 1.6408063530849116e-05,
2078
+ "loss": 1.7392,
2079
+ "step": 345
2080
+ },
2081
+ {
2082
+ "epoch": 0.82,
2083
+ "learning_rate": 1.639584605986561e-05,
2084
+ "loss": 0.7273,
2085
+ "step": 346
2086
+ },
2087
+ {
2088
+ "epoch": 0.82,
2089
+ "learning_rate": 1.6383628588882103e-05,
2090
+ "loss": 0.9469,
2091
+ "step": 347
2092
+ },
2093
+ {
2094
+ "epoch": 0.82,
2095
+ "learning_rate": 1.6371411117898598e-05,
2096
+ "loss": 0.7986,
2097
+ "step": 348
2098
+ },
2099
+ {
2100
+ "epoch": 0.83,
2101
+ "learning_rate": 1.635919364691509e-05,
2102
+ "loss": 0.8359,
2103
+ "step": 349
2104
+ },
2105
+ {
2106
+ "epoch": 0.83,
2107
+ "learning_rate": 1.6346976175931585e-05,
2108
+ "loss": 0.7852,
2109
+ "step": 350
2110
+ },
2111
+ {
2112
+ "epoch": 0.83,
2113
+ "learning_rate": 1.6334758704948076e-05,
2114
+ "loss": 1.1206,
2115
+ "step": 351
2116
+ },
2117
+ {
2118
+ "epoch": 0.83,
2119
+ "learning_rate": 1.632254123396457e-05,
2120
+ "loss": 0.9291,
2121
+ "step": 352
2122
+ },
2123
+ {
2124
+ "epoch": 0.83,
2125
+ "learning_rate": 1.6310323762981063e-05,
2126
+ "loss": 1.0176,
2127
+ "step": 353
2128
+ },
2129
+ {
2130
+ "epoch": 0.84,
2131
+ "learning_rate": 1.6298106291997558e-05,
2132
+ "loss": 1.018,
2133
+ "step": 354
2134
+ },
2135
+ {
2136
+ "epoch": 0.84,
2137
+ "learning_rate": 1.628588882101405e-05,
2138
+ "loss": 0.7873,
2139
+ "step": 355
2140
+ },
2141
+ {
2142
+ "epoch": 0.84,
2143
+ "learning_rate": 1.6273671350030545e-05,
2144
+ "loss": 0.9801,
2145
+ "step": 356
2146
+ },
2147
+ {
2148
+ "epoch": 0.84,
2149
+ "learning_rate": 1.6261453879047037e-05,
2150
+ "loss": 0.752,
2151
+ "step": 357
2152
+ },
2153
+ {
2154
+ "epoch": 0.85,
2155
+ "learning_rate": 1.6249236408063532e-05,
2156
+ "loss": 0.8991,
2157
+ "step": 358
2158
+ },
2159
+ {
2160
+ "epoch": 0.85,
2161
+ "learning_rate": 1.6237018937080027e-05,
2162
+ "loss": 0.8771,
2163
+ "step": 359
2164
+ },
2165
+ {
2166
+ "epoch": 0.85,
2167
+ "learning_rate": 1.622480146609652e-05,
2168
+ "loss": 0.8734,
2169
+ "step": 360
2170
+ },
2171
+ {
2172
+ "epoch": 0.85,
2173
+ "learning_rate": 1.6212583995113014e-05,
2174
+ "loss": 0.9302,
2175
+ "step": 361
2176
+ },
2177
+ {
2178
+ "epoch": 0.86,
2179
+ "learning_rate": 1.620036652412951e-05,
2180
+ "loss": 0.9362,
2181
+ "step": 362
2182
+ },
2183
+ {
2184
+ "epoch": 0.86,
2185
+ "learning_rate": 1.6188149053146e-05,
2186
+ "loss": 0.9994,
2187
+ "step": 363
2188
+ },
2189
+ {
2190
+ "epoch": 0.86,
2191
+ "learning_rate": 1.6175931582162496e-05,
2192
+ "loss": 0.7499,
2193
+ "step": 364
2194
+ },
2195
+ {
2196
+ "epoch": 0.86,
2197
+ "learning_rate": 1.6163714111178987e-05,
2198
+ "loss": 1.7184,
2199
+ "step": 365
2200
+ },
2201
+ {
2202
+ "epoch": 0.87,
2203
+ "learning_rate": 1.6151496640195482e-05,
2204
+ "loss": 1.0205,
2205
+ "step": 366
2206
+ },
2207
+ {
2208
+ "epoch": 0.87,
2209
+ "learning_rate": 1.6139279169211974e-05,
2210
+ "loss": 0.8763,
2211
+ "step": 367
2212
+ },
2213
+ {
2214
+ "epoch": 0.87,
2215
+ "learning_rate": 1.612706169822847e-05,
2216
+ "loss": 1.0264,
2217
+ "step": 368
2218
+ },
2219
+ {
2220
+ "epoch": 0.87,
2221
+ "learning_rate": 1.611484422724496e-05,
2222
+ "loss": 0.9088,
2223
+ "step": 369
2224
+ },
2225
+ {
2226
+ "epoch": 0.87,
2227
+ "learning_rate": 1.6102626756261456e-05,
2228
+ "loss": 0.7762,
2229
+ "step": 370
2230
+ },
2231
+ {
2232
+ "epoch": 0.88,
2233
+ "learning_rate": 1.6090409285277948e-05,
2234
+ "loss": 0.876,
2235
+ "step": 371
2236
+ },
2237
+ {
2238
+ "epoch": 0.88,
2239
+ "learning_rate": 1.6078191814294443e-05,
2240
+ "loss": 1.0591,
2241
+ "step": 372
2242
+ },
2243
+ {
2244
+ "epoch": 0.88,
2245
+ "learning_rate": 1.6065974343310935e-05,
2246
+ "loss": 0.8602,
2247
+ "step": 373
2248
+ },
2249
+ {
2250
+ "epoch": 0.88,
2251
+ "learning_rate": 1.605375687232743e-05,
2252
+ "loss": 0.8489,
2253
+ "step": 374
2254
+ },
2255
+ {
2256
+ "epoch": 0.89,
2257
+ "learning_rate": 1.6041539401343925e-05,
2258
+ "loss": 0.9205,
2259
+ "step": 375
2260
+ },
2261
+ {
2262
+ "epoch": 0.89,
2263
+ "learning_rate": 1.6029321930360416e-05,
2264
+ "loss": 0.926,
2265
+ "step": 376
2266
+ },
2267
+ {
2268
+ "epoch": 0.89,
2269
+ "learning_rate": 1.601710445937691e-05,
2270
+ "loss": 0.8983,
2271
+ "step": 377
2272
+ },
2273
+ {
2274
+ "epoch": 0.89,
2275
+ "learning_rate": 1.6004886988393403e-05,
2276
+ "loss": 1.0779,
2277
+ "step": 378
2278
+ },
2279
+ {
2280
+ "epoch": 0.9,
2281
+ "learning_rate": 1.59926695174099e-05,
2282
+ "loss": 0.9446,
2283
+ "step": 379
2284
+ },
2285
+ {
2286
+ "epoch": 0.9,
2287
+ "learning_rate": 1.598045204642639e-05,
2288
+ "loss": 1.1564,
2289
+ "step": 380
2290
+ },
2291
+ {
2292
+ "epoch": 0.9,
2293
+ "learning_rate": 1.5968234575442885e-05,
2294
+ "loss": 1.0101,
2295
+ "step": 381
2296
+ },
2297
+ {
2298
+ "epoch": 0.9,
2299
+ "learning_rate": 1.5956017104459377e-05,
2300
+ "loss": 1.0597,
2301
+ "step": 382
2302
+ },
2303
+ {
2304
+ "epoch": 0.91,
2305
+ "learning_rate": 1.5943799633475872e-05,
2306
+ "loss": 0.9408,
2307
+ "step": 383
2308
+ },
2309
+ {
2310
+ "epoch": 0.91,
2311
+ "learning_rate": 1.5931582162492364e-05,
2312
+ "loss": 1.1833,
2313
+ "step": 384
2314
+ },
2315
+ {
2316
+ "epoch": 0.91,
2317
+ "learning_rate": 1.591936469150886e-05,
2318
+ "loss": 1.0106,
2319
+ "step": 385
2320
+ },
2321
+ {
2322
+ "epoch": 0.91,
2323
+ "learning_rate": 1.590714722052535e-05,
2324
+ "loss": 1.6698,
2325
+ "step": 386
2326
+ },
2327
+ {
2328
+ "epoch": 0.92,
2329
+ "learning_rate": 1.5894929749541846e-05,
2330
+ "loss": 1.0123,
2331
+ "step": 387
2332
+ },
2333
+ {
2334
+ "epoch": 0.92,
2335
+ "learning_rate": 1.5882712278558337e-05,
2336
+ "loss": 0.9237,
2337
+ "step": 388
2338
+ },
2339
+ {
2340
+ "epoch": 0.92,
2341
+ "learning_rate": 1.5870494807574836e-05,
2342
+ "loss": 0.9182,
2343
+ "step": 389
2344
+ },
2345
+ {
2346
+ "epoch": 0.92,
2347
+ "learning_rate": 1.5858277336591327e-05,
2348
+ "loss": 0.9832,
2349
+ "step": 390
2350
+ },
2351
+ {
2352
+ "epoch": 0.92,
2353
+ "learning_rate": 1.5846059865607823e-05,
2354
+ "loss": 0.7884,
2355
+ "step": 391
2356
+ },
2357
+ {
2358
+ "epoch": 0.93,
2359
+ "learning_rate": 1.5833842394624314e-05,
2360
+ "loss": 1.0028,
2361
+ "step": 392
2362
+ },
2363
+ {
2364
+ "epoch": 0.93,
2365
+ "learning_rate": 1.582162492364081e-05,
2366
+ "loss": 1.0835,
2367
+ "step": 393
2368
+ },
2369
+ {
2370
+ "epoch": 0.93,
2371
+ "learning_rate": 1.58094074526573e-05,
2372
+ "loss": 0.9394,
2373
+ "step": 394
2374
+ },
2375
+ {
2376
+ "epoch": 0.93,
2377
+ "learning_rate": 1.5797189981673796e-05,
2378
+ "loss": 1.25,
2379
+ "step": 395
2380
+ },
2381
+ {
2382
+ "epoch": 0.94,
2383
+ "learning_rate": 1.5784972510690288e-05,
2384
+ "loss": 1.0046,
2385
+ "step": 396
2386
+ },
2387
+ {
2388
+ "epoch": 0.94,
2389
+ "learning_rate": 1.5772755039706783e-05,
2390
+ "loss": 0.6862,
2391
+ "step": 397
2392
+ },
2393
+ {
2394
+ "epoch": 0.94,
2395
+ "learning_rate": 1.5760537568723275e-05,
2396
+ "loss": 0.9672,
2397
+ "step": 398
2398
+ },
2399
+ {
2400
+ "epoch": 0.94,
2401
+ "learning_rate": 1.574832009773977e-05,
2402
+ "loss": 0.847,
2403
+ "step": 399
2404
+ },
2405
+ {
2406
+ "epoch": 0.95,
2407
+ "learning_rate": 1.573610262675626e-05,
2408
+ "loss": 1.1316,
2409
+ "step": 400
2410
+ },
2411
+ {
2412
+ "epoch": 0.95,
2413
+ "learning_rate": 1.5723885155772757e-05,
2414
+ "loss": 1.1577,
2415
+ "step": 401
2416
+ },
2417
+ {
2418
+ "epoch": 0.95,
2419
+ "learning_rate": 1.5711667684789248e-05,
2420
+ "loss": 0.7909,
2421
+ "step": 402
2422
+ },
2423
+ {
2424
+ "epoch": 0.95,
2425
+ "learning_rate": 1.5699450213805743e-05,
2426
+ "loss": 0.9476,
2427
+ "step": 403
2428
+ },
2429
+ {
2430
+ "epoch": 0.96,
2431
+ "learning_rate": 1.568723274282224e-05,
2432
+ "loss": 0.8651,
2433
+ "step": 404
2434
+ },
2435
+ {
2436
+ "epoch": 0.96,
2437
+ "learning_rate": 1.567501527183873e-05,
2438
+ "loss": 0.8349,
2439
+ "step": 405
2440
+ },
2441
+ {
2442
+ "epoch": 0.96,
2443
+ "learning_rate": 1.5662797800855225e-05,
2444
+ "loss": 1.0023,
2445
+ "step": 406
2446
+ },
2447
+ {
2448
+ "epoch": 0.96,
2449
+ "learning_rate": 1.5650580329871717e-05,
2450
+ "loss": 0.9267,
2451
+ "step": 407
2452
+ },
2453
+ {
2454
+ "epoch": 0.96,
2455
+ "learning_rate": 1.5638362858888212e-05,
2456
+ "loss": 0.7568,
2457
+ "step": 408
2458
+ },
2459
+ {
2460
+ "epoch": 0.97,
2461
+ "learning_rate": 1.5626145387904704e-05,
2462
+ "loss": 0.9849,
2463
+ "step": 409
2464
+ },
2465
+ {
2466
+ "epoch": 0.97,
2467
+ "learning_rate": 1.56139279169212e-05,
2468
+ "loss": 0.8452,
2469
+ "step": 410
2470
+ },
2471
+ {
2472
+ "epoch": 0.97,
2473
+ "learning_rate": 1.560171044593769e-05,
2474
+ "loss": 0.9507,
2475
+ "step": 411
2476
+ },
2477
+ {
2478
+ "epoch": 0.97,
2479
+ "learning_rate": 1.5589492974954186e-05,
2480
+ "loss": 0.9459,
2481
+ "step": 412
2482
+ },
2483
+ {
2484
+ "epoch": 0.98,
2485
+ "learning_rate": 1.557727550397068e-05,
2486
+ "loss": 0.9053,
2487
+ "step": 413
2488
+ },
2489
+ {
2490
+ "epoch": 0.98,
2491
+ "learning_rate": 1.5565058032987173e-05,
2492
+ "loss": 1.0029,
2493
+ "step": 414
2494
+ },
2495
+ {
2496
+ "epoch": 0.98,
2497
+ "learning_rate": 1.5552840562003668e-05,
2498
+ "loss": 0.7987,
2499
+ "step": 415
2500
+ },
2501
+ {
2502
+ "epoch": 0.98,
2503
+ "learning_rate": 1.554062309102016e-05,
2504
+ "loss": 0.7423,
2505
+ "step": 416
2506
+ },
2507
+ {
2508
+ "epoch": 0.99,
2509
+ "learning_rate": 1.5528405620036654e-05,
2510
+ "loss": 1.0905,
2511
+ "step": 417
2512
+ },
2513
+ {
2514
+ "epoch": 0.99,
2515
+ "learning_rate": 1.5516188149053146e-05,
2516
+ "loss": 0.829,
2517
+ "step": 418
2518
+ },
2519
+ {
2520
+ "epoch": 0.99,
2521
+ "learning_rate": 1.550397067806964e-05,
2522
+ "loss": 0.698,
2523
+ "step": 419
2524
+ },
2525
+ {
2526
+ "epoch": 0.99,
2527
+ "learning_rate": 1.5491753207086136e-05,
2528
+ "loss": 0.8893,
2529
+ "step": 420
2530
+ },
2531
+ {
2532
+ "epoch": 1.0,
2533
+ "learning_rate": 1.5479535736102628e-05,
2534
+ "loss": 0.992,
2535
+ "step": 421
2536
+ },
2537
+ {
2538
+ "epoch": 1.0,
2539
+ "learning_rate": 1.5467318265119123e-05,
2540
+ "loss": 1.0658,
2541
+ "step": 422
2542
+ }
2543
+ ],
2544
+ "logging_steps": 1.0,
2545
+ "max_steps": 1688,
2546
+ "num_input_tokens_seen": 0,
2547
+ "num_train_epochs": 4,
2548
+ "save_steps": 500,
2549
+ "total_flos": 2.030735869261906e+17,
2550
+ "train_batch_size": 1,
2551
+ "trial_name": null,
2552
+ "trial_params": null
2553
+ }
checkpoint-422/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5fd05faa475f5ea09145da8181858be9d5440fb2c8d86f380c3fb0a9ba1c01b
3
+ size 5048
checkpoint-845/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: /mnt/data_large/ccy/Llama-2-7b-hf
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.7.1
checkpoint-845/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/mnt/data_large/ccy/Llama-2-7b-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 512.0,
13
+ "lora_dropout": 0.1,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 128,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "q_proj",
23
+ "v_proj",
24
+ "o_proj",
25
+ "k_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-845/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9dfe3cc9b14d825825614d6d80c0b266eec43fbc411d8ecaf55cad238ac6e43
3
+ size 536906096
checkpoint-845/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4726e21ac73a6860f8d58bfd98475f534161d5e368957c386fbde1470914ad0
3
+ size 14244
checkpoint-845/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a50a668b3cfee1f185ee2d62fd9f67d9359c4f4b9684a6479a2a98a92c318c22
3
+ size 1064
checkpoint-845/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<pad>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
checkpoint-845/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-845/tokenizer_config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "32000": {
30
+ "content": "<pad>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ }
37
+ },
38
+ "bos_token": "<s>",
39
+ "clean_up_tokenization_spaces": false,
40
+ "eos_token": "</s>",
41
+ "legacy": false,
42
+ "model_max_length": 1000000000000000019884624838656,
43
+ "pad_token": "<pad>",
44
+ "padding_side": "right",
45
+ "sp_model_kwargs": {},
46
+ "tokenizer_class": "LlamaTokenizer",
47
+ "unk_token": "<unk>",
48
+ "use_default_system_prompt": false
49
+ }
checkpoint-845/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-845/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5fd05faa475f5ea09145da8181858be9d5440fb2c8d86f380c3fb0a9ba1c01b
3
+ size 5048
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<pad>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "32000": {
30
+ "content": "<pad>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ }
37
+ },
38
+ "bos_token": "<s>",
39
+ "clean_up_tokenization_spaces": false,
40
+ "eos_token": "</s>",
41
+ "legacy": false,
42
+ "model_max_length": 1000000000000000019884624838656,
43
+ "pad_token": "<pad>",
44
+ "padding_side": "right",
45
+ "sp_model_kwargs": {},
46
+ "tokenizer_class": "LlamaTokenizer",
47
+ "unk_token": "<unk>",
48
+ "use_default_system_prompt": false
49
+ }
train.log ADDED
@@ -0,0 +1,205 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 09/02/2024 09:22:37 - WARNING - __main__ - Process rank: 0, device: cuda:0, n_gpu: 1distributed training: True, 16-bits training: False
2
+ 09/02/2024 09:22:37 - INFO - __main__ - Training parameters TrainingArguments(
3
+ _n_gpu=1,
4
+ adafactor=False,
5
+ adam_beta1=0.9,
6
+ adam_beta2=0.999,
7
+ adam_epsilon=1e-08,
8
+ analysis_dataset=bbh,
9
+ analysis_mode=False,
10
+ auto_find_batch_size=False,
11
+ bf16=True,
12
+ bf16_full_eval=False,
13
+ data_seed=9,
14
+ dataloader_drop_last=False,
15
+ dataloader_num_workers=0,
16
+ dataloader_persistent_workers=False,
17
+ dataloader_pin_memory=True,
18
+ ddp_backend=None,
19
+ ddp_broadcast_buffers=None,
20
+ ddp_bucket_cap_mb=None,
21
+ ddp_find_unused_parameters=None,
22
+ ddp_timeout=1800,
23
+ debug=[],
24
+ deepspeed=None,
25
+ disable_tqdm=False,
26
+ dispatch_batches=None,
27
+ do_eval=False,
28
+ do_predict=False,
29
+ do_train=True,
30
+ eval_accumulation_steps=None,
31
+ eval_delay=0,
32
+ eval_steps=None,
33
+ evaluation_strategy=no,
34
+ fp16=False,
35
+ fp16_backend=auto,
36
+ fp16_full_eval=False,
37
+ fp16_opt_level=O1,
38
+ fsdp=[<FSDPOption.FULL_SHARD: 'full_shard'>, <FSDPOption.AUTO_WRAP: 'auto_wrap'>],
39
+ fsdp_config={'fsdp_transformer_layer_cls_to_wrap': ['LlamaDecoderLayer'], 'fsdp_backward_prefetch': 'backward_pre', 'limit_all_gathers': 'true', 'use_orig_params': 'true', 'min_num_params': 0, 'xla': False, 'xla_fsdp_grad_ckpt': False},
40
+ fsdp_min_num_params=0,
41
+ fsdp_transformer_layer_cls_to_wrap=None,
42
+ full_determinism=False,
43
+ gradient_accumulation_steps=32,
44
+ gradient_checkpointing=False,
45
+ gradient_checkpointing_kwargs=None,
46
+ greater_is_better=None,
47
+ group_by_length=False,
48
+ half_precision_backend=auto,
49
+ hub_always_push=False,
50
+ hub_model_id=None,
51
+ hub_private_repo=False,
52
+ hub_strategy=every_save,
53
+ hub_token=<HUB_TOKEN>,
54
+ ignore_data_skip=False,
55
+ include_inputs_for_metrics=False,
56
+ include_num_input_tokens_seen=False,
57
+ include_tokens_per_second=False,
58
+ jit_mode_eval=False,
59
+ label_names=None,
60
+ label_smoothing_factor=0.0,
61
+ learning_rate=2e-05,
62
+ length_column_name=length,
63
+ load_best_model_at_end=False,
64
+ local_rank=0,
65
+ log_level=passive,
66
+ log_level_replica=warning,
67
+ log_on_each_node=True,
68
+ logging_dir=../out/llama2-7b-p0.05-lora-seed9/runs/Sep02_09-22-37_dlc19oe6tjflhwaw-master-0,
69
+ logging_first_step=False,
70
+ logging_nan_inf_filter=True,
71
+ logging_steps=1.0,
72
+ logging_strategy=steps,
73
+ lr_scheduler_kwargs={},
74
+ lr_scheduler_type=linear,
75
+ max_grad_norm=1.0,
76
+ max_steps=-1,
77
+ metric_for_best_model=None,
78
+ mp_parameters=,
79
+ neftune_noise_alpha=None,
80
+ no_cuda=False,
81
+ num_train_epochs=4.0,
82
+ optim=adamw_torch,
83
+ optim_args=None,
84
+ output_dir=../out/llama2-7b-p0.05-lora-seed9,
85
+ overwrite_output_dir=True,
86
+ past_index=-1,
87
+ per_device_eval_batch_size=8,
88
+ per_device_train_batch_size=1,
89
+ prediction_loss_only=False,
90
+ push_to_hub=False,
91
+ push_to_hub_model_id=None,
92
+ push_to_hub_organization=None,
93
+ push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
94
+ ray_scope=last,
95
+ remove_unused_columns=True,
96
+ report_to=['wandb'],
97
+ resume_from_checkpoint=None,
98
+ run_name=../out/llama2-7b-p0.05-lora-seed9,
99
+ save_on_each_node=False,
100
+ save_only_model=False,
101
+ save_safetensors=True,
102
+ save_steps=500,
103
+ save_strategy=epoch,
104
+ save_total_limit=None,
105
+ seed=0,
106
+ skip_memory_metrics=True,
107
+ split_batches=False,
108
+ tf32=False,
109
+ torch_compile=False,
110
+ torch_compile_backend=None,
111
+ torch_compile_mode=None,
112
+ torchdynamo=None,
113
+ tpu_metrics_debug=False,
114
+ tpu_num_cores=None,
115
+ train_dataset_names=None,
116
+ use_cpu=False,
117
+ use_ipex=False,
118
+ use_legacy_prediction_loop=False,
119
+ use_mps_device=False,
120
+ warmup_ratio=0.03,
121
+ warmup_steps=0,
122
+ weight_decay=0.0,
123
+ )
124
+ 09/02/2024 09:22:37 - INFO - __main__ - Model parameters ModelArguments(model_name_or_path='/mnt/data_large/ccy/Llama-2-7b-hf', config_name=None, tokenizer_name=None, cache_dir=None, use_fast_tokenizer=True, model_revision='main', use_auth_token=False, torch_dtype=None, lora=True, lora_r=128, lora_alpha=512.0, lora_dropout=0.1, lora_target_modules=['q_proj', 'k_proj', 'v_proj', 'o_proj'])
125
+ 09/02/2024 09:22:37 - INFO - __main__ - Dataset parameters DataArguments(train_files=['./data/train/processed/flan_v2/flan_v2_data.jsonl', './data/train/processed/cot/cot_data.jsonl', './data/train/processed/dolly/dolly_data.jsonl', './data/train/processed/oasst1/oasst1_data.jsonl'], overwrite_cache=False, preprocessing_num_workers=None, max_seq_length=2048, sample_data_seed=42, percentage=0.05)
126
+ [INFO|tokenization_utils_base.py:2024] 2024-09-02 09:22:37,635 >> loading file tokenizer.model
127
+ [INFO|tokenization_utils_base.py:2024] 2024-09-02 09:22:37,635 >> loading file tokenizer.json
128
+ [INFO|tokenization_utils_base.py:2024] 2024-09-02 09:22:37,635 >> loading file added_tokens.json
129
+ [INFO|tokenization_utils_base.py:2024] 2024-09-02 09:22:37,635 >> loading file special_tokens_map.json
130
+ [INFO|tokenization_utils_base.py:2024] 2024-09-02 09:22:37,635 >> loading file tokenizer_config.json
131
+ Using custom data configuration default-f9134d95c1961a9a
132
+ 09/02/2024 09:22:38 - INFO - datasets.builder - Using custom data configuration default-f9134d95c1961a9a
133
+ Loading Dataset Infos from /home/pai/envs/less/lib/python3.10/site-packages/datasets/packaged_modules/json
134
+ 09/02/2024 09:22:38 - INFO - datasets.info - Loading Dataset Infos from /home/pai/envs/less/lib/python3.10/site-packages/datasets/packaged_modules/json
135
+ Overwrite dataset info from restored data version if exists.
136
+ 09/02/2024 09:22:38 - INFO - datasets.builder - Overwrite dataset info from restored data version if exists.
137
+ Loading Dataset info from /root/.cache/huggingface/datasets/json/default-f9134d95c1961a9a/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7
138
+ 09/02/2024 09:22:38 - INFO - datasets.info - Loading Dataset info from /root/.cache/huggingface/datasets/json/default-f9134d95c1961a9a/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7
139
+ Found cached dataset json (/root/.cache/huggingface/datasets/json/default-f9134d95c1961a9a/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7)
140
+ 09/02/2024 09:22:38 - INFO - datasets.builder - Found cached dataset json (/root/.cache/huggingface/datasets/json/default-f9134d95c1961a9a/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7)
141
+ Loading Dataset info from /root/.cache/huggingface/datasets/json/default-f9134d95c1961a9a/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7
142
+ 09/02/2024 09:22:38 - INFO - datasets.info - Loading Dataset info from /root/.cache/huggingface/datasets/json/default-f9134d95c1961a9a/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7
143
+ /mnt/data_large/ccy/Llama-2-7b-hf
144
+ ['./data/train/processed/flan_v2/flan_v2_data.jsonl', './data/train/processed/cot/cot_data.jsonl', './data/train/processed/dolly/dolly_data.jsonl', './data/train/processed/oasst1/oasst1_data.jsonl']
145
+ ['dataset', 'id', 'messages']
146
+ Process #0 will write at /root/.cache/huggingface/datasets/json/default-f9134d95c1961a9a/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-7ad18c1f20ceb8df_00000_of_00010.arrow
147
+ 09/02/2024 09:22:38 - INFO - datasets.arrow_dataset - Process #0 will write at /root/.cache/huggingface/datasets/json/default-f9134d95c1961a9a/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-7ad18c1f20ceb8df_00000_of_00010.arrow
148
+ Process #1 will write at /root/.cache/huggingface/datasets/json/default-f9134d95c1961a9a/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-7ad18c1f20ceb8df_00001_of_00010.arrow
149
+ 09/02/2024 09:22:38 - INFO - datasets.arrow_dataset - Process #1 will write at /root/.cache/huggingface/datasets/json/default-f9134d95c1961a9a/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-7ad18c1f20ceb8df_00001_of_00010.arrow
150
+ Process #2 will write at /root/.cache/huggingface/datasets/json/default-f9134d95c1961a9a/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-7ad18c1f20ceb8df_00002_of_00010.arrow
151
+ 09/02/2024 09:22:38 - INFO - datasets.arrow_dataset - Process #2 will write at /root/.cache/huggingface/datasets/json/default-f9134d95c1961a9a/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-7ad18c1f20ceb8df_00002_of_00010.arrow
152
+ Process #3 will write at /root/.cache/huggingface/datasets/json/default-f9134d95c1961a9a/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-7ad18c1f20ceb8df_00003_of_00010.arrow
153
+ 09/02/2024 09:22:38 - INFO - datasets.arrow_dataset - Process #3 will write at /root/.cache/huggingface/datasets/json/default-f9134d95c1961a9a/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-7ad18c1f20ceb8df_00003_of_00010.arrow
154
+ Process #4 will write at /root/.cache/huggingface/datasets/json/default-f9134d95c1961a9a/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-7ad18c1f20ceb8df_00004_of_00010.arrow
155
+ 09/02/2024 09:22:38 - INFO - datasets.arrow_dataset - Process #4 will write at /root/.cache/huggingface/datasets/json/default-f9134d95c1961a9a/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-7ad18c1f20ceb8df_00004_of_00010.arrow
156
+ Process #5 will write at /root/.cache/huggingface/datasets/json/default-f9134d95c1961a9a/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-7ad18c1f20ceb8df_00005_of_00010.arrow
157
+ 09/02/2024 09:22:38 - INFO - datasets.arrow_dataset - Process #5 will write at /root/.cache/huggingface/datasets/json/default-f9134d95c1961a9a/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-7ad18c1f20ceb8df_00005_of_00010.arrow
158
+ Process #6 will write at /root/.cache/huggingface/datasets/json/default-f9134d95c1961a9a/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-7ad18c1f20ceb8df_00006_of_00010.arrow
159
+ 09/02/2024 09:22:38 - INFO - datasets.arrow_dataset - Process #6 will write at /root/.cache/huggingface/datasets/json/default-f9134d95c1961a9a/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-7ad18c1f20ceb8df_00006_of_00010.arrow
160
+ Process #7 will write at /root/.cache/huggingface/datasets/json/default-f9134d95c1961a9a/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-7ad18c1f20ceb8df_00007_of_00010.arrow
161
+ 09/02/2024 09:22:38 - INFO - datasets.arrow_dataset - Process #7 will write at /root/.cache/huggingface/datasets/json/default-f9134d95c1961a9a/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-7ad18c1f20ceb8df_00007_of_00010.arrow
162
+ Process #8 will write at /root/.cache/huggingface/datasets/json/default-f9134d95c1961a9a/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-7ad18c1f20ceb8df_00008_of_00010.arrow
163
+ 09/02/2024 09:22:38 - INFO - datasets.arrow_dataset - Process #8 will write at /root/.cache/huggingface/datasets/json/default-f9134d95c1961a9a/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-7ad18c1f20ceb8df_00008_of_00010.arrow
164
+ Process #9 will write at /root/.cache/huggingface/datasets/json/default-f9134d95c1961a9a/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-7ad18c1f20ceb8df_00009_of_00010.arrow
165
+ 09/02/2024 09:22:38 - INFO - datasets.arrow_dataset - Process #9 will write at /root/.cache/huggingface/datasets/json/default-f9134d95c1961a9a/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-7ad18c1f20ceb8df_00009_of_00010.arrow
166
+ Loading cached processed dataset at /root/.cache/huggingface/datasets/json/default-f9134d95c1961a9a/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-7ad18c1f20ceb8df_*_of_00010.arrow
167
+ 09/02/2024 09:22:38 - INFO - datasets.arrow_dataset - Loading cached processed dataset at /root/.cache/huggingface/datasets/json/default-f9134d95c1961a9a/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-7ad18c1f20ceb8df_*_of_00010.arrow
168
+ Concatenating 10 shards
169
+ 09/02/2024 09:22:38 - INFO - datasets.arrow_dataset - Concatenating 10 shards
170
+ [INFO|configuration_utils.py:737] 2024-09-02 09:22:38,728 >> loading configuration file /mnt/data_large/ccy/Llama-2-7b-hf/config.json
171
+ [INFO|configuration_utils.py:802] 2024-09-02 09:22:38,729 >> Model config LlamaConfig {
172
+ "_name_or_path": "/mnt/data_large/ccy/Llama-2-7b-hf",
173
+ "architectures": [
174
+ "LlamaForCausalLM"
175
+ ],
176
+ "attention_bias": false,
177
+ "attention_dropout": 0.0,
178
+ "bos_token_id": 1,
179
+ "eos_token_id": 2,
180
+ "hidden_act": "silu",
181
+ "hidden_size": 4096,
182
+ "initializer_range": 0.02,
183
+ "intermediate_size": 11008,
184
+ "max_position_embeddings": 4096,
185
+ "model_type": "llama",
186
+ "num_attention_heads": 32,
187
+ "num_hidden_layers": 32,
188
+ "num_key_value_heads": 32,
189
+ "pretraining_tp": 1,
190
+ "rms_norm_eps": 1e-05,
191
+ "rope_scaling": null,
192
+ "rope_theta": 10000.0,
193
+ "tie_word_embeddings": false,
194
+ "transformers_version": "4.36.2",
195
+ "use_cache": true,
196
+ "vocab_size": 32000
197
+ }
198
+
199
+ [INFO|modeling_utils.py:3341] 2024-09-02 09:22:38,764 >> loading weights file /mnt/data_large/ccy/Llama-2-7b-hf/model.safetensors.index.json
200
+ [INFO|configuration_utils.py:826] 2024-09-02 09:22:38,765 >> Generate config GenerationConfig {
201
+ "bos_token_id": 1,
202
+ "eos_token_id": 2
203
+ }
204
+
205
+
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.99,
3
+ "train_loss": 0.919522538692889,
4
+ "train_runtime": 22845.2596,
5
+ "train_samples": 13533,
6
+ "train_samples_per_second": 2.37,
7
+ "train_steps_per_second": 0.074
8
+ }
trainer_state.json ADDED
The diff for this file is too large to render. See raw diff