--- library_name: transformers license: apache-2.0 base_model: openai/whisper-small tags: - whisper-event - generated_from_trainer metrics: - wer model-index: - name: output_dir results: [] --- # output_dir This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9972 - Wer: 99.4455 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:--------:| | 1.9297 | 1.0152 | 1000 | 1.9972 | 99.4455 | | 1.1678 | 2.0305 | 2000 | 1.9989 | 99.4455 | | 0.5123 | 3.0457 | 3000 | 2.0867 | 102.4030 | | 0.2025 | 4.0609 | 4000 | 2.1698 | 103.3272 | | 0.0843 | 5.0761 | 5000 | 2.2214 | 104.2514 | ### Framework versions - Transformers 4.44.1 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1