abhishtagatya commited on
Commit
6b0af98
·
verified ·
1 Parent(s): 4a89b1d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -5
README.md CHANGED
@@ -21,13 +21,24 @@ This model is a fine-tuned version of [microsoft/wavlm-base](https://huggingface
21
  It achieves the following results on the evaluation set:
22
  - Loss: 0.0593
23
  - Accuracy: 0.9896
24
- - Far: 0.0080
25
- - Frr: 0.0144
26
- - Eer: 0.0112
27
 
28
  ## Model description
29
 
30
- More information needed
 
 
 
 
 
 
 
 
 
 
 
31
 
32
  ## Intended uses & limitations
33
 
@@ -54,7 +65,7 @@ The following hyperparameters were used during training:
54
 
55
  ### Training results
56
 
57
- | Training Loss | Epoch | Step | Validation Loss | Accuracy | Far | Frr | Eer |
58
  |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:------:|:------:|
59
  | 0.3205 | 0.39 | 2500 | 0.1223 | 0.9699 | 0.0343 | 0.0229 | 0.0286 |
60
  | 0.0752 | 0.79 | 5000 | 0.0822 | 0.9843 | 0.0145 | 0.0178 | 0.0161 |
 
21
  It achieves the following results on the evaluation set:
22
  - Loss: 0.0593
23
  - Accuracy: 0.9896
24
+ - FAR: 0.0080
25
+ - FRR: 0.0144
26
+ - EER: 0.0112
27
 
28
  ## Model description
29
 
30
+ ### Quick Use
31
+
32
+ ```python
33
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
34
+
35
+ config = AutoConfig.from_pretrained("abhishtagatya/hubert-base-960h-itw-deepfake")
36
+ feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("abhishtagatya/hubert-base-960h-itw-deepfake")
37
+
38
+ model = HubertForSequenceClassification.from_pretrained("abhishtagatya/hubert-base-960h-itw-deepfake", config=config).to(device)
39
+
40
+ # Your Logic Here
41
+ ```
42
 
43
  ## Intended uses & limitations
44
 
 
65
 
66
  ### Training results
67
 
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | FAR | FRR | EER |
69
  |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:------:|:------:|
70
  | 0.3205 | 0.39 | 2500 | 0.1223 | 0.9699 | 0.0343 | 0.0229 | 0.0286 |
71
  | 0.0752 | 0.79 | 5000 | 0.0822 | 0.9843 | 0.0145 | 0.0178 | 0.0161 |