Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model:
|
3 |
+
- Qwen/Qwen3-8B
|
4 |
+
---
|
5 |
+
|
6 |
+
# Qwen3 AWQ Quantized Model Collection
|
7 |
+
|
8 |
+
This repository provides AWQ (Activation-aware Weight Quantization) versions of Qwen3 models, optimized for efficient deployment on consumer hardware while maintaining strong performance.
|
9 |
+
|
10 |
+
## Models Available
|
11 |
+
|
12 |
+
- **Qwen3-32B-AWQ** - 4-bit quantized, 32B parameters
|
13 |
+
- **Qwen3-14B-AWQ** - 4-bit quantized, 14B parameters
|
14 |
+
- **Qwen3-8B-AWQ** - 4-bit quantized, 8B parameters
|
15 |
+
- **Qwen3-4B-AWQ** - 4-bit quantized, 4B parameters
|
16 |
+
|
17 |
+
|
18 |
+
## Quantization Details
|
19 |
+
|
20 |
+
- **Weights:** 4-bit precision (AWQ)
|
21 |
+
- **Activations:** 16-bit precision
|
22 |
+
- **Benefits:**
|
23 |
+
- Up to 3x memory reduction vs FP16
|
24 |
+
- Up to 3x inference speedup on supported hardware
|
25 |
+
- Minimal loss in model quality
|
26 |
+
|
27 |
+
## Features
|
28 |
+
|
29 |
+
- **Multilingual:** Supports 100+ languages
|
30 |
+
- **Long Context:** Native 32K context, extendable with YaRN to 131K tokens
|
31 |
+
- **Efficient Inference:** Optimized for NVIDIA GPUs with Tensor Core support
|
32 |
+
|
33 |
+
## Usage
|
34 |
+
|
35 |
+
### With Hugging Face Transformers
|
36 |
+
|
37 |
+
```python
|
38 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
39 |
+
|
40 |
+
model = AutoModelForCausalLM.from_pretrained("abhishekchohan/Qwen3-8B-AWQ", device_map="auto")
|
41 |
+
tokenizer = AutoTokenizer.from_pretrained("abhishekchohan/Qwen3-8B-AWQ")
|
42 |
+
|
43 |
+
messages = [{"role": "user", "content": "Explain quantum computing."}]
|
44 |
+
text = tokenizer.apply_chat_template(messages, tokenize=False)
|
45 |
+
inputs = tokenizer(text, return_tensors="pt").to(model.device)
|
46 |
+
```
|
47 |
+
|
48 |
+
### With vLLM
|
49 |
+
|
50 |
+
```bash
|
51 |
+
vllm serve abhishekchohan/Qwen3-8B-AWQ \
|
52 |
+
--chat-template templates/chat_template.jinja \
|
53 |
+
--enable-expert-parallel \
|
54 |
+
--tensor-parallel-size 4
|
55 |
+
```
|
56 |
+
|
57 |
+
|
58 |
+
## Citation
|
59 |
+
|
60 |
+
If you use these models, please cite:
|
61 |
+
|
62 |
+
```
|
63 |
+
@misc{qwen3,
|
64 |
+
title = {Qwen3 Technical Report},
|
65 |
+
author = {Qwen Team},
|
66 |
+
year = {2025},
|
67 |
+
url = {https://github.com/QwenLM/Qwen3}
|
68 |
+
}
|
69 |
+
```
|