added handler.py
Browse files- handler.py +113 -0
handler.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
import io
|
3 |
+
import json
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from unsloth import FastVisionModel
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
# Global variables to hold the model and tokenizer.
|
10 |
+
model = None
|
11 |
+
tokenizer = None
|
12 |
+
|
13 |
+
def initialize():
|
14 |
+
"""
|
15 |
+
Called once when the model is loaded.
|
16 |
+
Loads the model and tokenizer from the pretrained checkpoint
|
17 |
+
and prepares the model for inference.
|
18 |
+
"""
|
19 |
+
global model, tokenizer
|
20 |
+
model, tokenizer = FastVisionModel.from_pretrained(
|
21 |
+
"abdurafeyf/Radixpert",
|
22 |
+
device_map="cuda"
|
23 |
+
)
|
24 |
+
FastVisionModel.for_inference(model)
|
25 |
+
|
26 |
+
def inference(payload):
|
27 |
+
"""
|
28 |
+
Expects a payload that is either a dict or a JSON string with the following format:
|
29 |
+
|
30 |
+
{
|
31 |
+
"data": {
|
32 |
+
"image": "<base64-encoded image string>",
|
33 |
+
"instruction": "<text instruction>"
|
34 |
+
}
|
35 |
+
}
|
36 |
+
|
37 |
+
The function decodes the image, applies the chat template to the instruction,
|
38 |
+
tokenizes both image and text, runs the model's generate method, and returns
|
39 |
+
the generated text as output.
|
40 |
+
"""
|
41 |
+
global model, tokenizer
|
42 |
+
try:
|
43 |
+
# If payload is a JSON string, decode it.
|
44 |
+
if isinstance(payload, str):
|
45 |
+
payload = json.loads(payload)
|
46 |
+
|
47 |
+
data = payload.get("data")
|
48 |
+
if data is None:
|
49 |
+
return {"error": "Missing 'data' in payload."}
|
50 |
+
|
51 |
+
image_b64 = data.get("image")
|
52 |
+
instruction = data.get("instruction")
|
53 |
+
if image_b64 is None or instruction is None:
|
54 |
+
return {"error": "Both 'image' and 'instruction' are required in the payload."}
|
55 |
+
|
56 |
+
# Decode the base64-encoded image and load it.
|
57 |
+
image_bytes = base64.b64decode(image_b64)
|
58 |
+
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
59 |
+
|
60 |
+
# Construct the chat messages as expected by the tokenizer.
|
61 |
+
messages = [
|
62 |
+
{
|
63 |
+
"role": "user",
|
64 |
+
"content": [
|
65 |
+
{"type": "image"},
|
66 |
+
{"type": "text", "text": instruction}
|
67 |
+
]
|
68 |
+
}
|
69 |
+
]
|
70 |
+
input_text = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
|
71 |
+
|
72 |
+
# Tokenize both image and text inputs.
|
73 |
+
inputs = tokenizer(
|
74 |
+
image,
|
75 |
+
input_text,
|
76 |
+
add_special_tokens=False,
|
77 |
+
return_tensors="pt",
|
78 |
+
).to("cuda")
|
79 |
+
|
80 |
+
# Generate output tokens.
|
81 |
+
outputs = model.generate(
|
82 |
+
**inputs,
|
83 |
+
max_new_tokens=128,
|
84 |
+
use_cache=True,
|
85 |
+
temperature=1.5,
|
86 |
+
min_p=0.1
|
87 |
+
)
|
88 |
+
|
89 |
+
# Decode the tokens to obtain the generated text.
|
90 |
+
output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
91 |
+
return {"output": output_text}
|
92 |
+
|
93 |
+
except Exception as e:
|
94 |
+
return {"error": str(e)}
|
95 |
+
|
96 |
+
# Optional: For local testing of the handler.
|
97 |
+
if __name__ == "__main__":
|
98 |
+
# Run initialization.
|
99 |
+
initialize()
|
100 |
+
|
101 |
+
# Example payload (you can replace with an actual base64-encoded image string).
|
102 |
+
sample_payload = {
|
103 |
+
"data": {
|
104 |
+
"image": "", # Insert a valid base64-encoded image string here.
|
105 |
+
"instruction": (
|
106 |
+
"You are an expert radiologist. Describe accurately in detail like a radiology report "
|
107 |
+
"what you see in this X-Ray Scan of a Chest."
|
108 |
+
)
|
109 |
+
}
|
110 |
+
}
|
111 |
+
|
112 |
+
result = inference(sample_payload)
|
113 |
+
print(result)
|