abcp4 commited on
Commit
5f7e4ef
·
1 Parent(s): 77e907d

Initial commit

Browse files
.gitattributes CHANGED
@@ -29,3 +29,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
29
  *.zip filter=lfs diff=lfs merge=lfs -text
30
  *.zstandard filter=lfs diff=lfs merge=lfs -text
31
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
29
  *.zip filter=lfs diff=lfs merge=lfs -text
30
  *.zstandard filter=lfs diff=lfs merge=lfs -text
31
  *tfevents* filter=lfs diff=lfs merge=lfs -text
32
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - HumanoidFlagrunBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: -61.72 +/- 16.30
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: HumanoidFlagrunBulletEnv-v0
20
+ type: HumanoidFlagrunBulletEnv-v0
21
+ ---
22
+
23
+ # **A2C** Agent playing **HumanoidFlagrunBulletEnv-v0**
24
+ This is a trained model of a **A2C** agent playing **HumanoidFlagrunBulletEnv-v0**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
a2c-HumanoidFlagrunBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fcb22f242ff333190c02171c531cb779f1e458a4585971898ffa58d07e35ffbc
3
+ size 154987
a2c-HumanoidFlagrunBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.0
a2c-HumanoidFlagrunBulletEnv-v0/data ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7efd404407a0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efd40440830>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efd404408c0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efd40440950>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7efd404409e0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7efd40440a70>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efd40440b00>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7efd40440b90>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efd40440c20>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efd40440cb0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efd40440d40>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7efd4041d0f0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {
23
+ ":type:": "<class 'dict'>",
24
+ ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
25
+ "log_std_init": -2,
26
+ "ortho_init": false,
27
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
28
+ "optimizer_kwargs": {
29
+ "alpha": 0.99,
30
+ "eps": 1e-05,
31
+ "weight_decay": 0
32
+ }
33
+ },
34
+ "observation_space": {
35
+ ":type:": "<class 'gym.spaces.box.Box'>",
36
+ ":serialized:": "gASVKwMAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLLIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsshZRoColDsAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsshZRoColDsAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsshZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsshZRoKolDLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
37
+ "dtype": "float32",
38
+ "_shape": [
39
+ 44
40
+ ],
41
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf]",
42
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf]",
43
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False]",
44
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False]",
45
+ "_np_random": null
46
+ },
47
+ "action_space": {
48
+ ":type:": "<class 'gym.spaces.box.Box'>",
49
+ ":serialized:": "gASVHQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLEYWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsRhZRoColDRAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsRhZRoColDRAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsRhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEQEBAQEBAQEBAQEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsRhZRoKolDEQEBAQEBAQEBAQEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu",
50
+ "dtype": "float32",
51
+ "_shape": [
52
+ 17
53
+ ],
54
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1.]",
55
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]",
56
+ "bounded_below": "[ True True True True True True True True True True True True\n True True True True True]",
57
+ "bounded_above": "[ True True True True True True True True True True True True\n True True True True True]",
58
+ "_np_random": null
59
+ },
60
+ "n_envs": 1,
61
+ "num_timesteps": 1770715,
62
+ "_total_timesteps": 2000000,
63
+ "_num_timesteps_at_start": 0,
64
+ "seed": null,
65
+ "action_noise": null,
66
+ "start_time": 1659969468.594693,
67
+ "learning_rate": 0.00096,
68
+ "tensorboard_log": "./tensorboard",
69
+ "lr_schedule": {
70
+ ":type:": "<class 'function'>",
71
+ ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
72
+ },
73
+ "_last_obs": {
74
+ ":type:": "<class 'numpy.ndarray'>",
75
+ ":serialized:": "gASVOgEAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLLIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUOwrRldv5sIg71EvZ8/Ljs5v5vWPz5Qaps/i6Covx6Cq78ik4I/JSXtvdssbj+dazC8tjZeP+UPCL5SIP4/4uISPRs2zT7RqMe9YFnHvzqoSD4oiio+58GkPW9yvL+8i3c9N8MfPxaYk71OmR0/I2YWPk7YAj7/G5s9t9+kPy/oe7w50sS/6fddPm6pSz/6tQ+9O83Nv1e63L2PTeM/bBn9vYNEwb+oe4o8ycinP5Iurj+UdJRiLg=="
76
+ },
77
+ "_last_episode_starts": {
78
+ ":type:": "<class 'numpy.ndarray'>",
79
+ ":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="
80
+ },
81
+ "_last_original_obs": {
82
+ ":type:": "<class 'numpy.ndarray'>",
83
+ ":serialized:": "gASVOgEAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLLIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUOwmZkZP2GF4T4O1GW/AAAAAAAAAAAAAAAAAAAAAAAAAIDKraM9AAAAAAgs2D4AAAAAHaVcPQAAAACvPQM/AAAAAN1ReT4AAAAA5XcvPwAAAAAf34U/AAAAAMsQQT8AAAAAp/XDPgAAAABYbC4/AAAAAC21hD8AAAAAnxEAPgAAAABflxA+AAAAACcfXj4AAAAASgl9vgAAAADenGi+AAAAAAgClz4AAAAAAAAAAAAAAACUdJRiLg=="
84
+ },
85
+ "_episode_num": 0,
86
+ "use_sde": true,
87
+ "sde_sample_freq": -1,
88
+ "_current_progress_remaining": 0.11464399999999997,
89
+ "ep_info_buffer": {
90
+ ":type:": "<class 'collections.deque'>",
91
+ ":serialized:": "gASV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEDdKwpvxYuMAWyUSyaMAXSUR0C48SPra/RFdX2UKGgGR8BDNSckMTewaAdLHWgIR0C48T9alk6LdX2UKGgGR8BZhx7VrhzeaAdLHGgIR0C48VnQID5kdX2UKGgGR8BCUIcaOxSpaAdLGGgIR0C48W+s1baAdX2UKGgGR8A639H+ZPVNaAdLI2gIR0C48Y8UM5OrdX2UKGgGR8BIfZrxiG34aAdLIGgIR0C48a4sAeaKdX2UKGgGR8BQFzp5eJHiaAdLI2gIR0C48dF+mWMTdX2UKGgGR8BJNASOBDohaAdLJGgIR0C48fE78vVWdX2UKGgGR8BGOb9AHE/CaAdLKmgIR0C48hcIeHSGdX2UKGgGR8BHBke6qbSaaAdLLGgIR0C48j/sNUfgdX2UKGgGR8BOZjgqEvkBaAdLH2gIR0C48lydJ8OTdX2UKGgGR8A/2u/k/8l5aAdLIWgIR0C48npNGmUGdX2UKGgGR8BHmdfkWAPNaAdLHmgIR0C48pYV6/qPdX2UKGgGR8A+KOWBz3h5aAdLH2gIR0C48rKcmShbdX2UKGgGR8BC6jZL7GedaAdLHmgIR0C48s4ZuQ6qdX2UKGgGR8BDX8Co0hvBaAdLJGgIR0C48vChrWRSdX2UKGgGR8BG+4cebNKRaAdLJGgIR0C48xGBvrGBdX2UKGgGR8BJS/95yEL6aAdLJGgIR0C48zJrxiG4dX2UKGgGR8A7+4wh4dIYaAdLJmgIR0C481RdpqREdX2UKGgGR8BHicQ7LdN4aAdLIWgIR0C483QaWHDadX2UKGgGR8BCEMeOn2qUaAdLHmgIR0C4848MiKR/dX2UKGgGR8A/L/Yao/A1aAdLImgIR0C487EqUeMidX2UKGgGR8BCqxBeHBUJaAdLHmgIR0C488vmDDjzdX2UKGgGR8BFzi1qnFYMaAdLIWgIR0C48+oAfdRBdX2UKGgGR8BCFNOmBOHnaAdLIWgIR0C49AkmICU5dX2UKGgGR8BGoFkxyn1naAdLLGgIR0C49DBsANobdX2UKGgGR8BJoBW5paicaAdLHWgIR0C49ErVvuPWdX2UKGgGR8BLbawt8NQTaAdLLWgIR0C49HN+kP+XdX2UKGgGR8A+UFMqSX+maAdLJWgIR0C49Jm+bmU4dX2UKGgGR8BDAMhPj4pMaAdLI2gIR0C49LsR6F/QdX2UKGgGR8BIVy6UaAFxaAdLLGgIR0C49OOe8PFvdX2UKGgGR8A4EDK5kK/maAdLImgIR0C49QMNlRP5dX2UKGgGR8BB4jwQUYbbaAdLKmgIR0C49SjOPeYVdX2UKGgGR8A9ItkWhysCaAdLImgIR0C49UnfZVXFdX2UKGgGR8A6lGQSzw+daAdLIGgIR0C49WgHqu8sdX2UKGgGR8BAknIyTINmaAdLKmgIR0C49ZCntOVPdX2UKGgGR8BAvLZ8KG+LaAdLQWgIR0C49dTdxhlUdX2UKGgGR8A37AVwgkkbaAdLIGgIR0C49fRbbDdhdX2UKGgGR8BFYSWqtHQQaAdLJmgIR0C49hdbLU1AdX2UKGgGR8BDNPoV2zOYaAdLHWgIR0C49jE6o2n9dX2UKGgGR8BD8FXiiqQzaAdLIGgIR0C49k4q0+khdX2UKGgGR8BF8wiiZfD2aAdLLWgIR0C49nd5IH1OdX2UKGgGR8BDvczhxYJWaAdLHmgIR0C49pMMd92HdX2UKGgGR8A9Jlnh86V/aAdLJWgIR0C49rXYHxBmdX2UKGgGR8BGrvF3pwCKaAdLI2gIR0C49taVt4zKdX2UKGgGR8BN7qNQ0oBraAdLImgIR0C49vcK9f1IdX2UKGgGR8BGhWsijcmCaAdLH2gIR0C49xO3trsTdX2UKGgGR8BHX3Onl4keaAdLMGgIR0C49z+2y9mIdX2UKGgGR8BD8FIEr5IpaAdLFmgIR0C491SQ1aW5dX2UKGgGR8BEMBbnoxHoaAdLGmgIR0C492vu1F6SdX2UKGgGR8BJvhTGYKIBaAdLLGgIR0C495eZPVNIdX2UKGgGR8BB89GAkLQYaAdLKGgIR0C4978NhE0BdX2UKGgGR8BG4GtITXaraAdLIWgIR0C4996uOjqOdX2UKGgGR8BB7NliBoVVaAdLIWgIR0C49/6DsdDIdX2UKGgGR8BFg2MKkVN6aAdLLWgIR0C4+Chb4agmdX2UKGgGR8BF0DbrTpgUaAdLHGgIR0C4+EMPJ7swdX2UKGgGR8BGu0XgtOEeaAdLImgIR0C4+GHJ9y93dX2UKGgGR8BJSvH1e0HAaAdLKGgIR0C4+IZmNBGAdX2UKGgGR8A+8fcvduYQaAdLLmgIR0C4+LC0v4/NdX2UKGgGR8A7kwazeGfxaAdLJWgIR0C4+NMo+fRNdX2UKGgGR8BLoDfWMCLdaAdLIGgIR0C4+O/5P/JedX2UKGgGR8A8IKx9oexOaAdLIWgIR0C4+Q1XmvGIdX2UKGgGR8BF2Hlnyup0aAdLJ2gIR0C4+TC3PRiPdX2UKGgGR8BHFJ5/smfHaAdLHGgIR0C4+UqLCN0edX2UKGgGR8BRigjIJZ4faAdLMWgIR0C4+Xc4cWCVdX2UKGgGR8BIPG+9Jz1caAdLJmgIR0C4+Z5pN9H+dX2UKGgGR8BJKTspobn6aAdLIWgIR0C4+cAO4G2UdX2UKGgGR8BB0CdJ8OTaaAdLIWgIR0C4+d2ZeAuqdX2UKGgGR8B3LrYUWVNYaAdLIGgIR0C4+fqK+BYndX2UKGgGR8BInKptJnQIaAdLI2gIR0C4+hpsfq5cdX2UKGgGR8BJ8Svkili0aAdLHmgIR0C4+jVzltCRdX2UKGgGR8BIjIkZ75VPaAdLLWgIR0C4+l6/dqL1dX2UKGgGR8BDv1AZ88cNaAdLMGgIR0C4+o3YL9dedX2UKGgGR8BEa/8/D+BIaAdLJGgIR0C4+q1AiV0LdX2UKGgGR8BI95dfLLZBaAdLJmgIR0C4+tFIAfdRdX2UKGgGR8BFYq94/u9faAdLJGgIR0C4+vHvttygdX2UKGgGR8BWtHtrsSkCaAdLEmgIR0C4+wMcp9ZzdX2UKGgGR8BEBjcuanaWaAdLImgIR0C4+yF6eGwidX2UKGgGR8BCF4YaYNRWaAdLJWgIR0C4+0Novi97dX2UKGgGR8A5V8fV7Qb/aAdLJGgIR0C4+2Pcer+6dX2UKGgGR8BPHa+FlCkXaAdLJ2gIR0C4+4iKm8/VdX2UKGgGR8A8y8+zMRpUaAdLKWgIR0C4+64xQBPsdX2UKGgGR8BP1X3pOerdaAdLLGgIR0C4+9jyOJcgdX2UKGgGR8BAsjkuHvc8aAdLJWgIR0C4+/mqT8pDdX2UKGgGR8BIXkETxoZiaAdLJ2gIR0C4/B0nogV5dX2UKGgGR8A63T37DVH4aAdLI2gIR0C4/Dw/C66KdX2UKGgGR8BB8kv0yxiYaAdLI2gIR0C4/F3T7VJ+dX2UKGgGR8BB3mALApKBaAdLI2gIR0C4/Hzye7L/dX2UKGgGR8BBef+KjzqbaAdLEmgIR0C4/IyGzru6dX2UKGgGR8BI5GQSzw+daAdLKWgIR0C4/LJ8BuGcdX2UKGgGR8BGuuKfnOjZaAdLH2gIR0C4/M8FpwjudX2UKGgGR8BZnzy4FzMiaAdLMGgIR0C4/PobwSamdX2UKGgGR8BL+tLDhtLtaAdLKWgIR0C4/SGgvlEJdX2UKGgGR8BNgwWnCO3laAdLTGgIR0C4/Wsma6SUdX2UKGgGR8BFcfaHsTnJaAdLI2gIR0C4/YmZiNKidX2UKGgGR8BK+pLuhK15aAdLGmgIR0C4/aGo73fydX2UKGgGR8BQznQyAQQMaAdLH2gIR0C4/b3/Pw/gdX2UKGgGR8BItZ5qubI+aAdLI2gIR0C4/d8Aq/dqdX2UKGgGR8BJhYuscQyzaAdLLmgIR0C4/glVDKHPdX2UKGgGR8BClsrNGEwnaAdLP2gIR0C4/kPdZaFFdWUu"
92
+ },
93
+ "ep_success_buffer": {
94
+ ":type:": "<class 'collections.deque'>",
95
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
96
+ },
97
+ "_n_updates": 221339,
98
+ "n_steps": 8,
99
+ "gamma": 0.99,
100
+ "gae_lambda": 0.9,
101
+ "ent_coef": 0.0,
102
+ "vf_coef": 0.4,
103
+ "max_grad_norm": 0.5,
104
+ "normalize_advantage": false
105
+ }
a2c-HumanoidFlagrunBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29b0e1a3e3682d3f811ee5216b4c2d21a26358d409c4d880873699ec56e2e716
3
+ size 69054
a2c-HumanoidFlagrunBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:316aad8207d41df27bf203519bbb4f021a191610709fa6f37f9393b28fa71319
3
+ size 69630
a2c-HumanoidFlagrunBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-HumanoidFlagrunBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.6.0
4
+ PyTorch: 1.12.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efd404407a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efd40440830>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efd404408c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efd40440950>", "_build": "<function ActorCriticPolicy._build at 0x7efd404409e0>", "forward": "<function ActorCriticPolicy.forward at 0x7efd40440a70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efd40440b00>", "_predict": "<function ActorCriticPolicy._predict at 0x7efd40440b90>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efd40440c20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efd40440cb0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efd40440d40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7efd4041d0f0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVKwMAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLLIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsshZRoColDsAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsshZRoColDsAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsshZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsshZRoKolDLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [44], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVHQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLEYWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsRhZRoColDRAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsRhZRoColDRAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsRhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEQEBAQEBAQEBAQEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsRhZRoKolDEQEBAQEBAQEBAQEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [17], "low": "[-1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True True True True True\n True True True True True]", "bounded_above": "[ True True True True True True True True True True True True\n True True True True True]", "_np_random": null}, "n_envs": 1, "num_timesteps": 1770715, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1659969468.594693, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVOgEAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLLIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUOwrRldv5sIg71EvZ8/Ljs5v5vWPz5Qaps/i6Covx6Cq78ik4I/JSXtvdssbj+dazC8tjZeP+UPCL5SIP4/4uISPRs2zT7RqMe9YFnHvzqoSD4oiio+58GkPW9yvL+8i3c9N8MfPxaYk71OmR0/I2YWPk7YAj7/G5s9t9+kPy/oe7w50sS/6fddPm6pSz/6tQ+9O83Nv1e63L2PTeM/bBn9vYNEwb+oe4o8ycinP5Iurj+UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVOgEAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLLIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUOwmZkZP2GF4T4O1GW/AAAAAAAAAAAAAAAAAAAAAAAAAIDKraM9AAAAAAgs2D4AAAAAHaVcPQAAAACvPQM/AAAAAN1ReT4AAAAA5XcvPwAAAAAf34U/AAAAAMsQQT8AAAAAp/XDPgAAAABYbC4/AAAAAC21hD8AAAAAnxEAPgAAAABflxA+AAAAACcfXj4AAAAASgl9vgAAAADenGi+AAAAAAgClz4AAAAAAAAAAAAAAACUdJRiLg=="}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.11464399999999997, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEDdKwpvxYuMAWyUSyaMAXSUR0C48SPra/RFdX2UKGgGR8BDNSckMTewaAdLHWgIR0C48T9alk6LdX2UKGgGR8BZhx7VrhzeaAdLHGgIR0C48VnQID5kdX2UKGgGR8BCUIcaOxSpaAdLGGgIR0C48W+s1baAdX2UKGgGR8A639H+ZPVNaAdLI2gIR0C48Y8UM5OrdX2UKGgGR8BIfZrxiG34aAdLIGgIR0C48a4sAeaKdX2UKGgGR8BQFzp5eJHiaAdLI2gIR0C48dF+mWMTdX2UKGgGR8BJNASOBDohaAdLJGgIR0C48fE78vVWdX2UKGgGR8BGOb9AHE/CaAdLKmgIR0C48hcIeHSGdX2UKGgGR8BHBke6qbSaaAdLLGgIR0C48j/sNUfgdX2UKGgGR8BOZjgqEvkBaAdLH2gIR0C48lydJ8OTdX2UKGgGR8A/2u/k/8l5aAdLIWgIR0C48npNGmUGdX2UKGgGR8BHmdfkWAPNaAdLHmgIR0C48pYV6/qPdX2UKGgGR8A+KOWBz3h5aAdLH2gIR0C48rKcmShbdX2UKGgGR8BC6jZL7GedaAdLHmgIR0C48s4ZuQ6qdX2UKGgGR8BDX8Co0hvBaAdLJGgIR0C48vChrWRSdX2UKGgGR8BG+4cebNKRaAdLJGgIR0C48xGBvrGBdX2UKGgGR8BJS/95yEL6aAdLJGgIR0C48zJrxiG4dX2UKGgGR8A7+4wh4dIYaAdLJmgIR0C481RdpqREdX2UKGgGR8BHicQ7LdN4aAdLIWgIR0C483QaWHDadX2UKGgGR8BCEMeOn2qUaAdLHmgIR0C4848MiKR/dX2UKGgGR8A/L/Yao/A1aAdLImgIR0C487EqUeMidX2UKGgGR8BCqxBeHBUJaAdLHmgIR0C488vmDDjzdX2UKGgGR8BFzi1qnFYMaAdLIWgIR0C48+oAfdRBdX2UKGgGR8BCFNOmBOHnaAdLIWgIR0C49AkmICU5dX2UKGgGR8BGoFkxyn1naAdLLGgIR0C49DBsANobdX2UKGgGR8BJoBW5paicaAdLHWgIR0C49ErVvuPWdX2UKGgGR8BLbawt8NQTaAdLLWgIR0C49HN+kP+XdX2UKGgGR8A+UFMqSX+maAdLJWgIR0C49Jm+bmU4dX2UKGgGR8BDAMhPj4pMaAdLI2gIR0C49LsR6F/QdX2UKGgGR8BIVy6UaAFxaAdLLGgIR0C49OOe8PFvdX2UKGgGR8A4EDK5kK/maAdLImgIR0C49QMNlRP5dX2UKGgGR8BB4jwQUYbbaAdLKmgIR0C49SjOPeYVdX2UKGgGR8A9ItkWhysCaAdLImgIR0C49UnfZVXFdX2UKGgGR8A6lGQSzw+daAdLIGgIR0C49WgHqu8sdX2UKGgGR8BAknIyTINmaAdLKmgIR0C49ZCntOVPdX2UKGgGR8BAvLZ8KG+LaAdLQWgIR0C49dTdxhlUdX2UKGgGR8A37AVwgkkbaAdLIGgIR0C49fRbbDdhdX2UKGgGR8BFYSWqtHQQaAdLJmgIR0C49hdbLU1AdX2UKGgGR8BDNPoV2zOYaAdLHWgIR0C49jE6o2n9dX2UKGgGR8BD8FXiiqQzaAdLIGgIR0C49k4q0+khdX2UKGgGR8BF8wiiZfD2aAdLLWgIR0C49nd5IH1OdX2UKGgGR8BDvczhxYJWaAdLHmgIR0C49pMMd92HdX2UKGgGR8A9Jlnh86V/aAdLJWgIR0C49rXYHxBmdX2UKGgGR8BGrvF3pwCKaAdLI2gIR0C49taVt4zKdX2UKGgGR8BN7qNQ0oBraAdLImgIR0C49vcK9f1IdX2UKGgGR8BGhWsijcmCaAdLH2gIR0C49xO3trsTdX2UKGgGR8BHX3Onl4keaAdLMGgIR0C49z+2y9mIdX2UKGgGR8BD8FIEr5IpaAdLFmgIR0C491SQ1aW5dX2UKGgGR8BEMBbnoxHoaAdLGmgIR0C492vu1F6SdX2UKGgGR8BJvhTGYKIBaAdLLGgIR0C495eZPVNIdX2UKGgGR8BB89GAkLQYaAdLKGgIR0C4978NhE0BdX2UKGgGR8BG4GtITXaraAdLIWgIR0C4996uOjqOdX2UKGgGR8BB7NliBoVVaAdLIWgIR0C49/6DsdDIdX2UKGgGR8BFg2MKkVN6aAdLLWgIR0C4+Chb4agmdX2UKGgGR8BF0DbrTpgUaAdLHGgIR0C4+EMPJ7swdX2UKGgGR8BGu0XgtOEeaAdLImgIR0C4+GHJ9y93dX2UKGgGR8BJSvH1e0HAaAdLKGgIR0C4+IZmNBGAdX2UKGgGR8A+8fcvduYQaAdLLmgIR0C4+LC0v4/NdX2UKGgGR8A7kwazeGfxaAdLJWgIR0C4+NMo+fRNdX2UKGgGR8BLoDfWMCLdaAdLIGgIR0C4+O/5P/JedX2UKGgGR8A8IKx9oexOaAdLIWgIR0C4+Q1XmvGIdX2UKGgGR8BF2Hlnyup0aAdLJ2gIR0C4+TC3PRiPdX2UKGgGR8BHFJ5/smfHaAdLHGgIR0C4+UqLCN0edX2UKGgGR8BRigjIJZ4faAdLMWgIR0C4+Xc4cWCVdX2UKGgGR8BIPG+9Jz1caAdLJmgIR0C4+Z5pN9H+dX2UKGgGR8BJKTspobn6aAdLIWgIR0C4+cAO4G2UdX2UKGgGR8BB0CdJ8OTaaAdLIWgIR0C4+d2ZeAuqdX2UKGgGR8B3LrYUWVNYaAdLIGgIR0C4+fqK+BYndX2UKGgGR8BInKptJnQIaAdLI2gIR0C4+hpsfq5cdX2UKGgGR8BJ8Svkili0aAdLHmgIR0C4+jVzltCRdX2UKGgGR8BIjIkZ75VPaAdLLWgIR0C4+l6/dqL1dX2UKGgGR8BDv1AZ88cNaAdLMGgIR0C4+o3YL9dedX2UKGgGR8BEa/8/D+BIaAdLJGgIR0C4+q1AiV0LdX2UKGgGR8BI95dfLLZBaAdLJmgIR0C4+tFIAfdRdX2UKGgGR8BFYq94/u9faAdLJGgIR0C4+vHvttygdX2UKGgGR8BWtHtrsSkCaAdLEmgIR0C4+wMcp9ZzdX2UKGgGR8BEBjcuanaWaAdLImgIR0C4+yF6eGwidX2UKGgGR8BCF4YaYNRWaAdLJWgIR0C4+0Novi97dX2UKGgGR8A5V8fV7Qb/aAdLJGgIR0C4+2Pcer+6dX2UKGgGR8BPHa+FlCkXaAdLJ2gIR0C4+4iKm8/VdX2UKGgGR8A8y8+zMRpUaAdLKWgIR0C4+64xQBPsdX2UKGgGR8BP1X3pOerdaAdLLGgIR0C4+9jyOJcgdX2UKGgGR8BAsjkuHvc8aAdLJWgIR0C4+/mqT8pDdX2UKGgGR8BIXkETxoZiaAdLJ2gIR0C4/B0nogV5dX2UKGgGR8A63T37DVH4aAdLI2gIR0C4/Dw/C66KdX2UKGgGR8BB8kv0yxiYaAdLI2gIR0C4/F3T7VJ+dX2UKGgGR8BB3mALApKBaAdLI2gIR0C4/Hzye7L/dX2UKGgGR8BBef+KjzqbaAdLEmgIR0C4/IyGzru6dX2UKGgGR8BI5GQSzw+daAdLKWgIR0C4/LJ8BuGcdX2UKGgGR8BGuuKfnOjZaAdLH2gIR0C4/M8FpwjudX2UKGgGR8BZnzy4FzMiaAdLMGgIR0C4/PobwSamdX2UKGgGR8BL+tLDhtLtaAdLKWgIR0C4/SGgvlEJdX2UKGgGR8BNgwWnCO3laAdLTGgIR0C4/Wsma6SUdX2UKGgGR8BFcfaHsTnJaAdLI2gIR0C4/YmZiNKidX2UKGgGR8BK+pLuhK15aAdLGmgIR0C4/aGo73fydX2UKGgGR8BQznQyAQQMaAdLH2gIR0C4/b3/Pw/gdX2UKGgGR8BItZ5qubI+aAdLI2gIR0C4/d8Aq/dqdX2UKGgGR8BJhYuscQyzaAdLLmgIR0C4/glVDKHPdX2UKGgGR8BClsrNGEwnaAdLP2gIR0C4/kPdZaFFdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 221339, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f1ffde47b801197b00dcf1e70dc66e1d6d79acd9c3043721a6cc802cd309cc7
3
+ size 1451474
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -61.72382399999999, "std_reward": 16.3022331378061, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-08-08T16:25:27.566613"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:869522624277b3a42fc34bcac3003ceb77bc0367cbe606ff2e066405c191d243
3
+ size 2906