aaurelions commited on
Commit
c5f7fcb
·
verified ·
1 Parent(s): 3841821

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +11 -0
  2. README.md +202 -0
  3. adapter_config.json +39 -0
  4. adapter_model.safetensors +3 -0
  5. added_tokens.json +12 -0
  6. checkpoint-1015/README.md +202 -0
  7. checkpoint-1015/adapter_config.json +39 -0
  8. checkpoint-1015/adapter_model.safetensors +3 -0
  9. checkpoint-1015/added_tokens.json +12 -0
  10. checkpoint-1015/merges.txt +0 -0
  11. checkpoint-1015/optimizer.pt +3 -0
  12. checkpoint-1015/rng_state.pth +3 -0
  13. checkpoint-1015/scheduler.pt +3 -0
  14. checkpoint-1015/special_tokens_map.json +30 -0
  15. checkpoint-1015/tokenizer.json +3 -0
  16. checkpoint-1015/tokenizer_config.json +112 -0
  17. checkpoint-1015/trainer_state.json +1455 -0
  18. checkpoint-1015/training_args.bin +3 -0
  19. checkpoint-1015/vocab.json +0 -0
  20. checkpoint-1160/README.md +202 -0
  21. checkpoint-1160/adapter_config.json +39 -0
  22. checkpoint-1160/adapter_model.safetensors +3 -0
  23. checkpoint-1160/added_tokens.json +12 -0
  24. checkpoint-1160/merges.txt +0 -0
  25. checkpoint-1160/optimizer.pt +3 -0
  26. checkpoint-1160/rng_state.pth +3 -0
  27. checkpoint-1160/scheduler.pt +3 -0
  28. checkpoint-1160/special_tokens_map.json +30 -0
  29. checkpoint-1160/tokenizer.json +3 -0
  30. checkpoint-1160/tokenizer_config.json +112 -0
  31. checkpoint-1160/trainer_state.json +1658 -0
  32. checkpoint-1160/training_args.bin +3 -0
  33. checkpoint-1160/vocab.json +0 -0
  34. checkpoint-1296/README.md +202 -0
  35. checkpoint-1296/adapter_config.json +39 -0
  36. checkpoint-1296/adapter_model.safetensors +3 -0
  37. checkpoint-1296/added_tokens.json +12 -0
  38. checkpoint-1296/merges.txt +0 -0
  39. checkpoint-1296/optimizer.pt +3 -0
  40. checkpoint-1296/rng_state.pth +3 -0
  41. checkpoint-1296/scheduler.pt +3 -0
  42. checkpoint-1296/special_tokens_map.json +30 -0
  43. checkpoint-1296/tokenizer.json +3 -0
  44. checkpoint-1296/tokenizer_config.json +112 -0
  45. checkpoint-1296/trainer_state.json +1847 -0
  46. checkpoint-1296/training_args.bin +3 -0
  47. checkpoint-1296/vocab.json +0 -0
  48. checkpoint-1440/README.md +202 -0
  49. checkpoint-1440/adapter_config.json +39 -0
  50. checkpoint-1440/adapter_model.safetensors +3 -0
.gitattributes CHANGED
@@ -33,3 +33,14 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ checkpoint-1015/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ checkpoint-1160/tokenizer.json filter=lfs diff=lfs merge=lfs -text
38
+ checkpoint-1296/tokenizer.json filter=lfs diff=lfs merge=lfs -text
39
+ checkpoint-1440/tokenizer.json filter=lfs diff=lfs merge=lfs -text
40
+ checkpoint-145/tokenizer.json filter=lfs diff=lfs merge=lfs -text
41
+ checkpoint-290/tokenizer.json filter=lfs diff=lfs merge=lfs -text
42
+ checkpoint-435/tokenizer.json filter=lfs diff=lfs merge=lfs -text
43
+ checkpoint-580/tokenizer.json filter=lfs diff=lfs merge=lfs -text
44
+ checkpoint-725/tokenizer.json filter=lfs diff=lfs merge=lfs -text
45
+ checkpoint-870/tokenizer.json filter=lfs diff=lfs merge=lfs -text
46
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/Phi-4-mini-instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.2
adapter_config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "microsoft/Phi-4-mini-instruct",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 32,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.05,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "r": 16,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": [
27
+ "up_proj",
28
+ "k_proj",
29
+ "down_proj",
30
+ "v_proj",
31
+ "gate_proj",
32
+ "q_proj",
33
+ "o_proj"
34
+ ],
35
+ "task_type": "CAUSAL_LM",
36
+ "trainable_token_indices": null,
37
+ "use_dora": false,
38
+ "use_rslora": false
39
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4cc441c40942232c13b927eed9af87f322fd1200bc9f0d752c896154de091dfc
3
+ size 35668592
added_tokens.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|/tool_call|>": 200026,
3
+ "<|/tool|>": 200024,
4
+ "<|assistant|>": 200019,
5
+ "<|end|>": 200020,
6
+ "<|system|>": 200022,
7
+ "<|tag|>": 200028,
8
+ "<|tool_call|>": 200025,
9
+ "<|tool_response|>": 200027,
10
+ "<|tool|>": 200023,
11
+ "<|user|>": 200021
12
+ }
checkpoint-1015/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/Phi-4-mini-instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.2
checkpoint-1015/adapter_config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "microsoft/Phi-4-mini-instruct",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 32,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.05,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "r": 16,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": [
27
+ "v_proj",
28
+ "k_proj",
29
+ "q_proj",
30
+ "down_proj",
31
+ "o_proj",
32
+ "gate_proj",
33
+ "up_proj"
34
+ ],
35
+ "task_type": "CAUSAL_LM",
36
+ "trainable_token_indices": null,
37
+ "use_dora": false,
38
+ "use_rslora": false
39
+ }
checkpoint-1015/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9dafe819bf5b39d325d75a8a30bf6ee7f086581c06bb78d8e052610f7031263b
3
+ size 35668592
checkpoint-1015/added_tokens.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|/tool_call|>": 200026,
3
+ "<|/tool|>": 200024,
4
+ "<|assistant|>": 200019,
5
+ "<|end|>": 200020,
6
+ "<|system|>": 200022,
7
+ "<|tag|>": 200028,
8
+ "<|tool_call|>": 200025,
9
+ "<|tool_response|>": 200027,
10
+ "<|tool|>": 200023,
11
+ "<|user|>": 200021
12
+ }
checkpoint-1015/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1015/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c9611d917a023fceb7b528ce85df1daf9000a8445f6033ed25b2f15b458706c
3
+ size 18256762
checkpoint-1015/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b8383c5783d7f5d36e86bcd0413175724cfe8d935b75f5718ebce15da2520db
3
+ size 14244
checkpoint-1015/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2b1b8967ebada03e032f79513b5fe237a5a72498509a76353e0945780d48342
3
+ size 1064
checkpoint-1015/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|endoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<|endoftext|>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
checkpoint-1015/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d7f47443257fe193e8dcb1e6912235832f416fd25161c021f77cb63163cd44e
3
+ size 15524193
checkpoint-1015/tokenizer_config.json ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": false,
5
+ "added_tokens_decoder": {
6
+ "199999": {
7
+ "content": "<|endoftext|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "200018": {
15
+ "content": "<|endofprompt|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "200019": {
23
+ "content": "<|assistant|>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": true,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "200020": {
31
+ "content": "<|end|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": true,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "200021": {
39
+ "content": "<|user|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": true,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "200022": {
47
+ "content": "<|system|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": true,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "200023": {
55
+ "content": "<|tool|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": true,
59
+ "single_word": false,
60
+ "special": false
61
+ },
62
+ "200024": {
63
+ "content": "<|/tool|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": true,
67
+ "single_word": false,
68
+ "special": false
69
+ },
70
+ "200025": {
71
+ "content": "<|tool_call|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": true,
75
+ "single_word": false,
76
+ "special": false
77
+ },
78
+ "200026": {
79
+ "content": "<|/tool_call|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": true,
83
+ "single_word": false,
84
+ "special": false
85
+ },
86
+ "200027": {
87
+ "content": "<|tool_response|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": true,
91
+ "single_word": false,
92
+ "special": false
93
+ },
94
+ "200028": {
95
+ "content": "<|tag|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": true,
99
+ "single_word": false,
100
+ "special": true
101
+ }
102
+ },
103
+ "bos_token": "<|endoftext|>",
104
+ "chat_template": "{% for message in messages %}{% if message['role'] == 'system' and 'tools' in message and message['tools'] is not none %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|tool|>' + message['tools'] + '<|/tool|>' + '<|end|>' }}{% else %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|end|>' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>' }}{% else %}{{ eos_token }}{% endif %}",
105
+ "clean_up_tokenization_spaces": false,
106
+ "eos_token": "<|endoftext|>",
107
+ "extra_special_tokens": {},
108
+ "model_max_length": 131072,
109
+ "pad_token": "<|endoftext|>",
110
+ "tokenizer_class": "GPT2Tokenizer",
111
+ "unk_token": "<|endoftext|>"
112
+ }
checkpoint-1015/trainer_state.json ADDED
@@ -0,0 +1,1455 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 7.0,
6
+ "eval_steps": 500,
7
+ "global_step": 1015,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.03466204506065858,
14
+ "grad_norm": 1.530611515045166,
15
+ "learning_rate": 0.0002,
16
+ "loss": 3.0151,
17
+ "step": 5
18
+ },
19
+ {
20
+ "epoch": 0.06932409012131716,
21
+ "grad_norm": 1.7004058361053467,
22
+ "learning_rate": 0.0002,
23
+ "loss": 2.0235,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.10398613518197573,
28
+ "grad_norm": 1.933908462524414,
29
+ "learning_rate": 0.0002,
30
+ "loss": 1.1225,
31
+ "step": 15
32
+ },
33
+ {
34
+ "epoch": 0.1386481802426343,
35
+ "grad_norm": 0.9951248168945312,
36
+ "learning_rate": 0.0002,
37
+ "loss": 0.5422,
38
+ "step": 20
39
+ },
40
+ {
41
+ "epoch": 0.1733102253032929,
42
+ "grad_norm": 6.152623176574707,
43
+ "learning_rate": 0.0002,
44
+ "loss": 1.5639,
45
+ "step": 25
46
+ },
47
+ {
48
+ "epoch": 0.20797227036395147,
49
+ "grad_norm": 8.008278846740723,
50
+ "learning_rate": 0.0002,
51
+ "loss": 2.6486,
52
+ "step": 30
53
+ },
54
+ {
55
+ "epoch": 0.24263431542461006,
56
+ "grad_norm": 4.960943222045898,
57
+ "learning_rate": 0.0002,
58
+ "loss": 2.6059,
59
+ "step": 35
60
+ },
61
+ {
62
+ "epoch": 0.2772963604852686,
63
+ "grad_norm": 4.607645511627197,
64
+ "learning_rate": 0.0002,
65
+ "loss": 1.6898,
66
+ "step": 40
67
+ },
68
+ {
69
+ "epoch": 0.3119584055459272,
70
+ "grad_norm": 0.8448249101638794,
71
+ "learning_rate": 0.0002,
72
+ "loss": 0.799,
73
+ "step": 45
74
+ },
75
+ {
76
+ "epoch": 0.3466204506065858,
77
+ "grad_norm": 0.46238261461257935,
78
+ "learning_rate": 0.0002,
79
+ "loss": 0.5374,
80
+ "step": 50
81
+ },
82
+ {
83
+ "epoch": 0.38128249566724437,
84
+ "grad_norm": 0.3575257956981659,
85
+ "learning_rate": 0.0002,
86
+ "loss": 0.4247,
87
+ "step": 55
88
+ },
89
+ {
90
+ "epoch": 0.41594454072790293,
91
+ "grad_norm": 2.5151493549346924,
92
+ "learning_rate": 0.0002,
93
+ "loss": 0.7472,
94
+ "step": 60
95
+ },
96
+ {
97
+ "epoch": 0.4506065857885615,
98
+ "grad_norm": 17.38052749633789,
99
+ "learning_rate": 0.0002,
100
+ "loss": 1.8466,
101
+ "step": 65
102
+ },
103
+ {
104
+ "epoch": 0.4852686308492201,
105
+ "grad_norm": 15.523968696594238,
106
+ "learning_rate": 0.0002,
107
+ "loss": 2.1105,
108
+ "step": 70
109
+ },
110
+ {
111
+ "epoch": 0.5199306759098787,
112
+ "grad_norm": 1.0907574892044067,
113
+ "learning_rate": 0.0002,
114
+ "loss": 1.1052,
115
+ "step": 75
116
+ },
117
+ {
118
+ "epoch": 0.5545927209705372,
119
+ "grad_norm": 0.5225581526756287,
120
+ "learning_rate": 0.0002,
121
+ "loss": 0.5663,
122
+ "step": 80
123
+ },
124
+ {
125
+ "epoch": 0.5892547660311959,
126
+ "grad_norm": 0.3306778073310852,
127
+ "learning_rate": 0.0002,
128
+ "loss": 0.4648,
129
+ "step": 85
130
+ },
131
+ {
132
+ "epoch": 0.6239168110918544,
133
+ "grad_norm": 0.33595138788223267,
134
+ "learning_rate": 0.0002,
135
+ "loss": 0.3762,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 0.658578856152513,
140
+ "grad_norm": 1.978458285331726,
141
+ "learning_rate": 0.0002,
142
+ "loss": 0.9162,
143
+ "step": 95
144
+ },
145
+ {
146
+ "epoch": 0.6932409012131716,
147
+ "grad_norm": 1.1226632595062256,
148
+ "learning_rate": 0.0002,
149
+ "loss": 1.5477,
150
+ "step": 100
151
+ },
152
+ {
153
+ "epoch": 0.7279029462738301,
154
+ "grad_norm": 22.263992309570312,
155
+ "learning_rate": 0.0002,
156
+ "loss": 1.8063,
157
+ "step": 105
158
+ },
159
+ {
160
+ "epoch": 0.7625649913344887,
161
+ "grad_norm": 1.3690563440322876,
162
+ "learning_rate": 0.0002,
163
+ "loss": 1.3102,
164
+ "step": 110
165
+ },
166
+ {
167
+ "epoch": 0.7972270363951474,
168
+ "grad_norm": 0.5651267766952515,
169
+ "learning_rate": 0.0002,
170
+ "loss": 0.553,
171
+ "step": 115
172
+ },
173
+ {
174
+ "epoch": 0.8318890814558059,
175
+ "grad_norm": 0.3272489011287689,
176
+ "learning_rate": 0.0002,
177
+ "loss": 0.4813,
178
+ "step": 120
179
+ },
180
+ {
181
+ "epoch": 0.8665511265164645,
182
+ "grad_norm": 0.30475500226020813,
183
+ "learning_rate": 0.0002,
184
+ "loss": 0.3746,
185
+ "step": 125
186
+ },
187
+ {
188
+ "epoch": 0.901213171577123,
189
+ "grad_norm": 0.2812097370624542,
190
+ "learning_rate": 0.0002,
191
+ "loss": 0.284,
192
+ "step": 130
193
+ },
194
+ {
195
+ "epoch": 0.9358752166377816,
196
+ "grad_norm": 1.159839391708374,
197
+ "learning_rate": 0.0002,
198
+ "loss": 1.5179,
199
+ "step": 135
200
+ },
201
+ {
202
+ "epoch": 0.9705372616984402,
203
+ "grad_norm": 4.740174770355225,
204
+ "learning_rate": 0.0002,
205
+ "loss": 1.549,
206
+ "step": 140
207
+ },
208
+ {
209
+ "epoch": 1.0,
210
+ "grad_norm": 2.613008499145508,
211
+ "learning_rate": 0.0002,
212
+ "loss": 1.3938,
213
+ "step": 145
214
+ },
215
+ {
216
+ "epoch": 1.0346620450606585,
217
+ "grad_norm": 0.31811827421188354,
218
+ "learning_rate": 0.0002,
219
+ "loss": 0.5353,
220
+ "step": 150
221
+ },
222
+ {
223
+ "epoch": 1.0693240901213172,
224
+ "grad_norm": 0.42897579073905945,
225
+ "learning_rate": 0.0002,
226
+ "loss": 0.4452,
227
+ "step": 155
228
+ },
229
+ {
230
+ "epoch": 1.1039861351819757,
231
+ "grad_norm": 0.28854838013648987,
232
+ "learning_rate": 0.0002,
233
+ "loss": 0.3563,
234
+ "step": 160
235
+ },
236
+ {
237
+ "epoch": 1.1386481802426343,
238
+ "grad_norm": 0.32319992780685425,
239
+ "learning_rate": 0.0002,
240
+ "loss": 0.2697,
241
+ "step": 165
242
+ },
243
+ {
244
+ "epoch": 1.173310225303293,
245
+ "grad_norm": 1.0144641399383545,
246
+ "learning_rate": 0.0002,
247
+ "loss": 1.3199,
248
+ "step": 170
249
+ },
250
+ {
251
+ "epoch": 1.2079722703639515,
252
+ "grad_norm": 2.1387648582458496,
253
+ "learning_rate": 0.0002,
254
+ "loss": 1.1948,
255
+ "step": 175
256
+ },
257
+ {
258
+ "epoch": 1.24263431542461,
259
+ "grad_norm": 5.240429401397705,
260
+ "learning_rate": 0.0002,
261
+ "loss": 1.2138,
262
+ "step": 180
263
+ },
264
+ {
265
+ "epoch": 1.2772963604852685,
266
+ "grad_norm": 0.5809195637702942,
267
+ "learning_rate": 0.0002,
268
+ "loss": 0.7417,
269
+ "step": 185
270
+ },
271
+ {
272
+ "epoch": 1.3119584055459272,
273
+ "grad_norm": 0.3426031768321991,
274
+ "learning_rate": 0.0002,
275
+ "loss": 0.4541,
276
+ "step": 190
277
+ },
278
+ {
279
+ "epoch": 1.3466204506065858,
280
+ "grad_norm": 0.34089571237564087,
281
+ "learning_rate": 0.0002,
282
+ "loss": 0.3709,
283
+ "step": 195
284
+ },
285
+ {
286
+ "epoch": 1.3812824956672443,
287
+ "grad_norm": 0.2676282823085785,
288
+ "learning_rate": 0.0002,
289
+ "loss": 0.2981,
290
+ "step": 200
291
+ },
292
+ {
293
+ "epoch": 1.415944540727903,
294
+ "grad_norm": 1.8662705421447754,
295
+ "learning_rate": 0.0002,
296
+ "loss": 0.8353,
297
+ "step": 205
298
+ },
299
+ {
300
+ "epoch": 1.4506065857885615,
301
+ "grad_norm": 3.2310688495635986,
302
+ "learning_rate": 0.0002,
303
+ "loss": 1.2188,
304
+ "step": 210
305
+ },
306
+ {
307
+ "epoch": 1.48526863084922,
308
+ "grad_norm": 2.255415916442871,
309
+ "learning_rate": 0.0002,
310
+ "loss": 1.1677,
311
+ "step": 215
312
+ },
313
+ {
314
+ "epoch": 1.5199306759098787,
315
+ "grad_norm": 0.5544691681861877,
316
+ "learning_rate": 0.0002,
317
+ "loss": 0.799,
318
+ "step": 220
319
+ },
320
+ {
321
+ "epoch": 1.5545927209705372,
322
+ "grad_norm": 0.4003375172615051,
323
+ "learning_rate": 0.0002,
324
+ "loss": 0.4786,
325
+ "step": 225
326
+ },
327
+ {
328
+ "epoch": 1.5892547660311958,
329
+ "grad_norm": 0.3774619698524475,
330
+ "learning_rate": 0.0002,
331
+ "loss": 0.4233,
332
+ "step": 230
333
+ },
334
+ {
335
+ "epoch": 1.6239168110918545,
336
+ "grad_norm": 0.352490097284317,
337
+ "learning_rate": 0.0002,
338
+ "loss": 0.3332,
339
+ "step": 235
340
+ },
341
+ {
342
+ "epoch": 1.658578856152513,
343
+ "grad_norm": 0.2637154459953308,
344
+ "learning_rate": 0.0002,
345
+ "loss": 0.2438,
346
+ "step": 240
347
+ },
348
+ {
349
+ "epoch": 1.6932409012131715,
350
+ "grad_norm": 1.3437107801437378,
351
+ "learning_rate": 0.0002,
352
+ "loss": 1.4351,
353
+ "step": 245
354
+ },
355
+ {
356
+ "epoch": 1.7279029462738302,
357
+ "grad_norm": 2.647561550140381,
358
+ "learning_rate": 0.0002,
359
+ "loss": 1.0698,
360
+ "step": 250
361
+ },
362
+ {
363
+ "epoch": 1.7625649913344887,
364
+ "grad_norm": 0.6839751601219177,
365
+ "learning_rate": 0.0002,
366
+ "loss": 0.7411,
367
+ "step": 255
368
+ },
369
+ {
370
+ "epoch": 1.7972270363951472,
371
+ "grad_norm": 0.4790812134742737,
372
+ "learning_rate": 0.0002,
373
+ "loss": 0.5009,
374
+ "step": 260
375
+ },
376
+ {
377
+ "epoch": 1.831889081455806,
378
+ "grad_norm": 0.36322328448295593,
379
+ "learning_rate": 0.0002,
380
+ "loss": 0.4014,
381
+ "step": 265
382
+ },
383
+ {
384
+ "epoch": 1.8665511265164645,
385
+ "grad_norm": 0.31694507598876953,
386
+ "learning_rate": 0.0002,
387
+ "loss": 0.3441,
388
+ "step": 270
389
+ },
390
+ {
391
+ "epoch": 1.901213171577123,
392
+ "grad_norm": 0.24292677640914917,
393
+ "learning_rate": 0.0002,
394
+ "loss": 0.2619,
395
+ "step": 275
396
+ },
397
+ {
398
+ "epoch": 1.9358752166377817,
399
+ "grad_norm": 1.133062720298767,
400
+ "learning_rate": 0.0002,
401
+ "loss": 1.1564,
402
+ "step": 280
403
+ },
404
+ {
405
+ "epoch": 1.9705372616984402,
406
+ "grad_norm": 10.754274368286133,
407
+ "learning_rate": 0.0002,
408
+ "loss": 1.436,
409
+ "step": 285
410
+ },
411
+ {
412
+ "epoch": 2.0,
413
+ "grad_norm": 1.6346553564071655,
414
+ "learning_rate": 0.0002,
415
+ "loss": 1.3215,
416
+ "step": 290
417
+ },
418
+ {
419
+ "epoch": 2.0346620450606587,
420
+ "grad_norm": 0.7156389355659485,
421
+ "learning_rate": 0.0002,
422
+ "loss": 0.551,
423
+ "step": 295
424
+ },
425
+ {
426
+ "epoch": 2.069324090121317,
427
+ "grad_norm": 0.3842258155345917,
428
+ "learning_rate": 0.0002,
429
+ "loss": 0.3783,
430
+ "step": 300
431
+ },
432
+ {
433
+ "epoch": 2.1039861351819757,
434
+ "grad_norm": 0.35967278480529785,
435
+ "learning_rate": 0.0002,
436
+ "loss": 0.3124,
437
+ "step": 305
438
+ },
439
+ {
440
+ "epoch": 2.1386481802426345,
441
+ "grad_norm": 0.296977162361145,
442
+ "learning_rate": 0.0002,
443
+ "loss": 0.2367,
444
+ "step": 310
445
+ },
446
+ {
447
+ "epoch": 2.1733102253032928,
448
+ "grad_norm": 1.6834601163864136,
449
+ "learning_rate": 0.0002,
450
+ "loss": 0.7685,
451
+ "step": 315
452
+ },
453
+ {
454
+ "epoch": 2.2079722703639515,
455
+ "grad_norm": 5.758884906768799,
456
+ "learning_rate": 0.0002,
457
+ "loss": 1.0063,
458
+ "step": 320
459
+ },
460
+ {
461
+ "epoch": 2.2426343154246102,
462
+ "grad_norm": 15.24948501586914,
463
+ "learning_rate": 0.0002,
464
+ "loss": 1.231,
465
+ "step": 325
466
+ },
467
+ {
468
+ "epoch": 2.2772963604852685,
469
+ "grad_norm": 0.599730372428894,
470
+ "learning_rate": 0.0002,
471
+ "loss": 0.6392,
472
+ "step": 330
473
+ },
474
+ {
475
+ "epoch": 2.3119584055459272,
476
+ "grad_norm": 0.5307044982910156,
477
+ "learning_rate": 0.0002,
478
+ "loss": 0.3804,
479
+ "step": 335
480
+ },
481
+ {
482
+ "epoch": 2.346620450606586,
483
+ "grad_norm": 0.33558061718940735,
484
+ "learning_rate": 0.0002,
485
+ "loss": 0.3282,
486
+ "step": 340
487
+ },
488
+ {
489
+ "epoch": 2.3812824956672443,
490
+ "grad_norm": 0.2716732919216156,
491
+ "learning_rate": 0.0002,
492
+ "loss": 0.2429,
493
+ "step": 345
494
+ },
495
+ {
496
+ "epoch": 2.415944540727903,
497
+ "grad_norm": 2.454636812210083,
498
+ "learning_rate": 0.0002,
499
+ "loss": 0.5396,
500
+ "step": 350
501
+ },
502
+ {
503
+ "epoch": 2.4506065857885613,
504
+ "grad_norm": 13.286089897155762,
505
+ "learning_rate": 0.0002,
506
+ "loss": 1.0545,
507
+ "step": 355
508
+ },
509
+ {
510
+ "epoch": 2.48526863084922,
511
+ "grad_norm": 12.619502067565918,
512
+ "learning_rate": 0.0002,
513
+ "loss": 1.1547,
514
+ "step": 360
515
+ },
516
+ {
517
+ "epoch": 2.5199306759098787,
518
+ "grad_norm": 0.6347368359565735,
519
+ "learning_rate": 0.0002,
520
+ "loss": 0.7136,
521
+ "step": 365
522
+ },
523
+ {
524
+ "epoch": 2.554592720970537,
525
+ "grad_norm": 0.44485101103782654,
526
+ "learning_rate": 0.0002,
527
+ "loss": 0.3994,
528
+ "step": 370
529
+ },
530
+ {
531
+ "epoch": 2.5892547660311958,
532
+ "grad_norm": 0.36494728922843933,
533
+ "learning_rate": 0.0002,
534
+ "loss": 0.3107,
535
+ "step": 375
536
+ },
537
+ {
538
+ "epoch": 2.6239168110918545,
539
+ "grad_norm": 0.322171688079834,
540
+ "learning_rate": 0.0002,
541
+ "loss": 0.2753,
542
+ "step": 380
543
+ },
544
+ {
545
+ "epoch": 2.6585788561525128,
546
+ "grad_norm": 0.9659174084663391,
547
+ "learning_rate": 0.0002,
548
+ "loss": 0.2948,
549
+ "step": 385
550
+ },
551
+ {
552
+ "epoch": 2.6932409012131715,
553
+ "grad_norm": 0.9371129870414734,
554
+ "learning_rate": 0.0002,
555
+ "loss": 1.0286,
556
+ "step": 390
557
+ },
558
+ {
559
+ "epoch": 2.7279029462738302,
560
+ "grad_norm": 3.4619617462158203,
561
+ "learning_rate": 0.0002,
562
+ "loss": 1.0745,
563
+ "step": 395
564
+ },
565
+ {
566
+ "epoch": 2.7625649913344885,
567
+ "grad_norm": 0.6884852051734924,
568
+ "learning_rate": 0.0002,
569
+ "loss": 0.7637,
570
+ "step": 400
571
+ },
572
+ {
573
+ "epoch": 2.7972270363951472,
574
+ "grad_norm": 0.4440446197986603,
575
+ "learning_rate": 0.0002,
576
+ "loss": 0.4331,
577
+ "step": 405
578
+ },
579
+ {
580
+ "epoch": 2.831889081455806,
581
+ "grad_norm": 0.37561893463134766,
582
+ "learning_rate": 0.0002,
583
+ "loss": 0.3667,
584
+ "step": 410
585
+ },
586
+ {
587
+ "epoch": 2.8665511265164643,
588
+ "grad_norm": 0.320077121257782,
589
+ "learning_rate": 0.0002,
590
+ "loss": 0.2769,
591
+ "step": 415
592
+ },
593
+ {
594
+ "epoch": 2.901213171577123,
595
+ "grad_norm": 1.4914495944976807,
596
+ "learning_rate": 0.0002,
597
+ "loss": 0.4493,
598
+ "step": 420
599
+ },
600
+ {
601
+ "epoch": 2.9358752166377817,
602
+ "grad_norm": 1.164036750793457,
603
+ "learning_rate": 0.0002,
604
+ "loss": 1.1276,
605
+ "step": 425
606
+ },
607
+ {
608
+ "epoch": 2.97053726169844,
609
+ "grad_norm": 5.013108253479004,
610
+ "learning_rate": 0.0002,
611
+ "loss": 1.0841,
612
+ "step": 430
613
+ },
614
+ {
615
+ "epoch": 3.0,
616
+ "grad_norm": 2.2247564792633057,
617
+ "learning_rate": 0.0002,
618
+ "loss": 0.7636,
619
+ "step": 435
620
+ },
621
+ {
622
+ "epoch": 3.0346620450606587,
623
+ "grad_norm": 0.3730102479457855,
624
+ "learning_rate": 0.0002,
625
+ "loss": 0.4291,
626
+ "step": 440
627
+ },
628
+ {
629
+ "epoch": 3.069324090121317,
630
+ "grad_norm": 0.36571791768074036,
631
+ "learning_rate": 0.0002,
632
+ "loss": 0.3155,
633
+ "step": 445
634
+ },
635
+ {
636
+ "epoch": 3.1039861351819757,
637
+ "grad_norm": 0.34427550435066223,
638
+ "learning_rate": 0.0002,
639
+ "loss": 0.2297,
640
+ "step": 450
641
+ },
642
+ {
643
+ "epoch": 3.1386481802426345,
644
+ "grad_norm": 0.3725241422653198,
645
+ "learning_rate": 0.0002,
646
+ "loss": 0.173,
647
+ "step": 455
648
+ },
649
+ {
650
+ "epoch": 3.1733102253032928,
651
+ "grad_norm": 0.9735671877861023,
652
+ "learning_rate": 0.0002,
653
+ "loss": 0.8876,
654
+ "step": 460
655
+ },
656
+ {
657
+ "epoch": 3.2079722703639515,
658
+ "grad_norm": 3.0348145961761475,
659
+ "learning_rate": 0.0002,
660
+ "loss": 0.7825,
661
+ "step": 465
662
+ },
663
+ {
664
+ "epoch": 3.2426343154246102,
665
+ "grad_norm": 1.4603136777877808,
666
+ "learning_rate": 0.0002,
667
+ "loss": 0.8017,
668
+ "step": 470
669
+ },
670
+ {
671
+ "epoch": 3.2772963604852685,
672
+ "grad_norm": 0.6849704384803772,
673
+ "learning_rate": 0.0002,
674
+ "loss": 0.6029,
675
+ "step": 475
676
+ },
677
+ {
678
+ "epoch": 3.3119584055459272,
679
+ "grad_norm": 0.45950087904930115,
680
+ "learning_rate": 0.0002,
681
+ "loss": 0.3388,
682
+ "step": 480
683
+ },
684
+ {
685
+ "epoch": 3.346620450606586,
686
+ "grad_norm": 0.3234940469264984,
687
+ "learning_rate": 0.0002,
688
+ "loss": 0.2635,
689
+ "step": 485
690
+ },
691
+ {
692
+ "epoch": 3.3812824956672443,
693
+ "grad_norm": 0.3088044822216034,
694
+ "learning_rate": 0.0002,
695
+ "loss": 0.1867,
696
+ "step": 490
697
+ },
698
+ {
699
+ "epoch": 3.415944540727903,
700
+ "grad_norm": 0.36887720227241516,
701
+ "learning_rate": 0.0002,
702
+ "loss": 0.1653,
703
+ "step": 495
704
+ },
705
+ {
706
+ "epoch": 3.4506065857885613,
707
+ "grad_norm": 1.041858196258545,
708
+ "learning_rate": 0.0002,
709
+ "loss": 0.9041,
710
+ "step": 500
711
+ },
712
+ {
713
+ "epoch": 3.48526863084922,
714
+ "grad_norm": 1.4774988889694214,
715
+ "learning_rate": 0.0002,
716
+ "loss": 0.9789,
717
+ "step": 505
718
+ },
719
+ {
720
+ "epoch": 3.5199306759098787,
721
+ "grad_norm": 0.6804758310317993,
722
+ "learning_rate": 0.0002,
723
+ "loss": 0.5891,
724
+ "step": 510
725
+ },
726
+ {
727
+ "epoch": 3.554592720970537,
728
+ "grad_norm": 0.43344879150390625,
729
+ "learning_rate": 0.0002,
730
+ "loss": 0.3632,
731
+ "step": 515
732
+ },
733
+ {
734
+ "epoch": 3.5892547660311958,
735
+ "grad_norm": 0.4160469174385071,
736
+ "learning_rate": 0.0002,
737
+ "loss": 0.2734,
738
+ "step": 520
739
+ },
740
+ {
741
+ "epoch": 3.6239168110918545,
742
+ "grad_norm": 0.35103052854537964,
743
+ "learning_rate": 0.0002,
744
+ "loss": 0.2215,
745
+ "step": 525
746
+ },
747
+ {
748
+ "epoch": 3.6585788561525128,
749
+ "grad_norm": 1.083409309387207,
750
+ "learning_rate": 0.0002,
751
+ "loss": 0.2623,
752
+ "step": 530
753
+ },
754
+ {
755
+ "epoch": 3.6932409012131715,
756
+ "grad_norm": 1.2548085451126099,
757
+ "learning_rate": 0.0002,
758
+ "loss": 0.9395,
759
+ "step": 535
760
+ },
761
+ {
762
+ "epoch": 3.7279029462738302,
763
+ "grad_norm": 2.565399169921875,
764
+ "learning_rate": 0.0002,
765
+ "loss": 0.9097,
766
+ "step": 540
767
+ },
768
+ {
769
+ "epoch": 3.7625649913344885,
770
+ "grad_norm": 0.6658923625946045,
771
+ "learning_rate": 0.0002,
772
+ "loss": 0.739,
773
+ "step": 545
774
+ },
775
+ {
776
+ "epoch": 3.7972270363951472,
777
+ "grad_norm": 0.4989807605743408,
778
+ "learning_rate": 0.0002,
779
+ "loss": 0.396,
780
+ "step": 550
781
+ },
782
+ {
783
+ "epoch": 3.831889081455806,
784
+ "grad_norm": 0.39474496245384216,
785
+ "learning_rate": 0.0002,
786
+ "loss": 0.2809,
787
+ "step": 555
788
+ },
789
+ {
790
+ "epoch": 3.8665511265164643,
791
+ "grad_norm": 0.38600996136665344,
792
+ "learning_rate": 0.0002,
793
+ "loss": 0.2254,
794
+ "step": 560
795
+ },
796
+ {
797
+ "epoch": 3.901213171577123,
798
+ "grad_norm": 0.3662823736667633,
799
+ "learning_rate": 0.0002,
800
+ "loss": 0.167,
801
+ "step": 565
802
+ },
803
+ {
804
+ "epoch": 3.9358752166377817,
805
+ "grad_norm": 1.349672794342041,
806
+ "learning_rate": 0.0002,
807
+ "loss": 1.1593,
808
+ "step": 570
809
+ },
810
+ {
811
+ "epoch": 3.97053726169844,
812
+ "grad_norm": 2.3923165798187256,
813
+ "learning_rate": 0.0002,
814
+ "loss": 0.8778,
815
+ "step": 575
816
+ },
817
+ {
818
+ "epoch": 4.0,
819
+ "grad_norm": 0.7578555345535278,
820
+ "learning_rate": 0.0002,
821
+ "loss": 0.6897,
822
+ "step": 580
823
+ },
824
+ {
825
+ "epoch": 4.034662045060658,
826
+ "grad_norm": 0.5052911043167114,
827
+ "learning_rate": 0.0002,
828
+ "loss": 0.3913,
829
+ "step": 585
830
+ },
831
+ {
832
+ "epoch": 4.0693240901213175,
833
+ "grad_norm": 0.5212499499320984,
834
+ "learning_rate": 0.0002,
835
+ "loss": 0.2326,
836
+ "step": 590
837
+ },
838
+ {
839
+ "epoch": 4.103986135181976,
840
+ "grad_norm": 0.452105313539505,
841
+ "learning_rate": 0.0002,
842
+ "loss": 0.1846,
843
+ "step": 595
844
+ },
845
+ {
846
+ "epoch": 4.138648180242634,
847
+ "grad_norm": 0.4193221926689148,
848
+ "learning_rate": 0.0002,
849
+ "loss": 0.1359,
850
+ "step": 600
851
+ },
852
+ {
853
+ "epoch": 4.173310225303293,
854
+ "grad_norm": 2.3956053256988525,
855
+ "learning_rate": 0.0002,
856
+ "loss": 0.3795,
857
+ "step": 605
858
+ },
859
+ {
860
+ "epoch": 4.2079722703639515,
861
+ "grad_norm": 1.946535348892212,
862
+ "learning_rate": 0.0002,
863
+ "loss": 0.579,
864
+ "step": 610
865
+ },
866
+ {
867
+ "epoch": 4.24263431542461,
868
+ "grad_norm": 1.874873161315918,
869
+ "learning_rate": 0.0002,
870
+ "loss": 0.7528,
871
+ "step": 615
872
+ },
873
+ {
874
+ "epoch": 4.277296360485269,
875
+ "grad_norm": 0.6922146081924438,
876
+ "learning_rate": 0.0002,
877
+ "loss": 0.4398,
878
+ "step": 620
879
+ },
880
+ {
881
+ "epoch": 4.311958405545927,
882
+ "grad_norm": 0.5228244662284851,
883
+ "learning_rate": 0.0002,
884
+ "loss": 0.2615,
885
+ "step": 625
886
+ },
887
+ {
888
+ "epoch": 4.3466204506065855,
889
+ "grad_norm": 0.34687915444374084,
890
+ "learning_rate": 0.0002,
891
+ "loss": 0.191,
892
+ "step": 630
893
+ },
894
+ {
895
+ "epoch": 4.381282495667245,
896
+ "grad_norm": 0.4160069525241852,
897
+ "learning_rate": 0.0002,
898
+ "loss": 0.1434,
899
+ "step": 635
900
+ },
901
+ {
902
+ "epoch": 4.415944540727903,
903
+ "grad_norm": 1.468666434288025,
904
+ "learning_rate": 0.0002,
905
+ "loss": 0.61,
906
+ "step": 640
907
+ },
908
+ {
909
+ "epoch": 4.450606585788561,
910
+ "grad_norm": 3.174201488494873,
911
+ "learning_rate": 0.0002,
912
+ "loss": 0.5773,
913
+ "step": 645
914
+ },
915
+ {
916
+ "epoch": 4.4852686308492205,
917
+ "grad_norm": 1.8258005380630493,
918
+ "learning_rate": 0.0002,
919
+ "loss": 0.7495,
920
+ "step": 650
921
+ },
922
+ {
923
+ "epoch": 4.519930675909879,
924
+ "grad_norm": 0.8468143343925476,
925
+ "learning_rate": 0.0002,
926
+ "loss": 0.5441,
927
+ "step": 655
928
+ },
929
+ {
930
+ "epoch": 4.554592720970537,
931
+ "grad_norm": 0.5467656254768372,
932
+ "learning_rate": 0.0002,
933
+ "loss": 0.2906,
934
+ "step": 660
935
+ },
936
+ {
937
+ "epoch": 4.589254766031196,
938
+ "grad_norm": 0.396992564201355,
939
+ "learning_rate": 0.0002,
940
+ "loss": 0.2186,
941
+ "step": 665
942
+ },
943
+ {
944
+ "epoch": 4.6239168110918545,
945
+ "grad_norm": 0.31931889057159424,
946
+ "learning_rate": 0.0002,
947
+ "loss": 0.1629,
948
+ "step": 670
949
+ },
950
+ {
951
+ "epoch": 4.658578856152513,
952
+ "grad_norm": 1.755745530128479,
953
+ "learning_rate": 0.0002,
954
+ "loss": 0.2292,
955
+ "step": 675
956
+ },
957
+ {
958
+ "epoch": 4.693240901213172,
959
+ "grad_norm": 0.9869062900543213,
960
+ "learning_rate": 0.0002,
961
+ "loss": 0.6716,
962
+ "step": 680
963
+ },
964
+ {
965
+ "epoch": 4.72790294627383,
966
+ "grad_norm": 1.5987203121185303,
967
+ "learning_rate": 0.0002,
968
+ "loss": 0.8182,
969
+ "step": 685
970
+ },
971
+ {
972
+ "epoch": 4.7625649913344885,
973
+ "grad_norm": 0.870819091796875,
974
+ "learning_rate": 0.0002,
975
+ "loss": 0.5902,
976
+ "step": 690
977
+ },
978
+ {
979
+ "epoch": 4.797227036395148,
980
+ "grad_norm": 0.5098839402198792,
981
+ "learning_rate": 0.0002,
982
+ "loss": 0.3224,
983
+ "step": 695
984
+ },
985
+ {
986
+ "epoch": 4.831889081455806,
987
+ "grad_norm": 0.5435961484909058,
988
+ "learning_rate": 0.0002,
989
+ "loss": 0.2182,
990
+ "step": 700
991
+ },
992
+ {
993
+ "epoch": 4.866551126516464,
994
+ "grad_norm": 0.33275553584098816,
995
+ "learning_rate": 0.0002,
996
+ "loss": 0.1595,
997
+ "step": 705
998
+ },
999
+ {
1000
+ "epoch": 4.9012131715771226,
1001
+ "grad_norm": 1.8109265565872192,
1002
+ "learning_rate": 0.0002,
1003
+ "loss": 0.1985,
1004
+ "step": 710
1005
+ },
1006
+ {
1007
+ "epoch": 4.935875216637782,
1008
+ "grad_norm": 1.149431824684143,
1009
+ "learning_rate": 0.0002,
1010
+ "loss": 0.8148,
1011
+ "step": 715
1012
+ },
1013
+ {
1014
+ "epoch": 4.97053726169844,
1015
+ "grad_norm": 1.4355350732803345,
1016
+ "learning_rate": 0.0002,
1017
+ "loss": 0.6675,
1018
+ "step": 720
1019
+ },
1020
+ {
1021
+ "epoch": 5.0,
1022
+ "grad_norm": 2.76149845123291,
1023
+ "learning_rate": 0.0002,
1024
+ "loss": 0.5541,
1025
+ "step": 725
1026
+ },
1027
+ {
1028
+ "epoch": 5.034662045060658,
1029
+ "grad_norm": 0.6026546359062195,
1030
+ "learning_rate": 0.0002,
1031
+ "loss": 0.3515,
1032
+ "step": 730
1033
+ },
1034
+ {
1035
+ "epoch": 5.0693240901213175,
1036
+ "grad_norm": 0.37150222063064575,
1037
+ "learning_rate": 0.0002,
1038
+ "loss": 0.1661,
1039
+ "step": 735
1040
+ },
1041
+ {
1042
+ "epoch": 5.103986135181976,
1043
+ "grad_norm": 0.31225013732910156,
1044
+ "learning_rate": 0.0002,
1045
+ "loss": 0.1243,
1046
+ "step": 740
1047
+ },
1048
+ {
1049
+ "epoch": 5.138648180242634,
1050
+ "grad_norm": 0.4382600784301758,
1051
+ "learning_rate": 0.0002,
1052
+ "loss": 0.1004,
1053
+ "step": 745
1054
+ },
1055
+ {
1056
+ "epoch": 5.173310225303293,
1057
+ "grad_norm": 2.0306389331817627,
1058
+ "learning_rate": 0.0002,
1059
+ "loss": 0.3743,
1060
+ "step": 750
1061
+ },
1062
+ {
1063
+ "epoch": 5.2079722703639515,
1064
+ "grad_norm": 1.6935468912124634,
1065
+ "learning_rate": 0.0002,
1066
+ "loss": 0.4202,
1067
+ "step": 755
1068
+ },
1069
+ {
1070
+ "epoch": 5.24263431542461,
1071
+ "grad_norm": 1.4990637302398682,
1072
+ "learning_rate": 0.0002,
1073
+ "loss": 0.5533,
1074
+ "step": 760
1075
+ },
1076
+ {
1077
+ "epoch": 5.277296360485269,
1078
+ "grad_norm": 0.6687419414520264,
1079
+ "learning_rate": 0.0002,
1080
+ "loss": 0.3429,
1081
+ "step": 765
1082
+ },
1083
+ {
1084
+ "epoch": 5.311958405545927,
1085
+ "grad_norm": 0.5400169491767883,
1086
+ "learning_rate": 0.0002,
1087
+ "loss": 0.1759,
1088
+ "step": 770
1089
+ },
1090
+ {
1091
+ "epoch": 5.3466204506065855,
1092
+ "grad_norm": 0.39679139852523804,
1093
+ "learning_rate": 0.0002,
1094
+ "loss": 0.1395,
1095
+ "step": 775
1096
+ },
1097
+ {
1098
+ "epoch": 5.381282495667245,
1099
+ "grad_norm": 0.33043885231018066,
1100
+ "learning_rate": 0.0002,
1101
+ "loss": 0.1004,
1102
+ "step": 780
1103
+ },
1104
+ {
1105
+ "epoch": 5.415944540727903,
1106
+ "grad_norm": 3.1912200450897217,
1107
+ "learning_rate": 0.0002,
1108
+ "loss": 0.305,
1109
+ "step": 785
1110
+ },
1111
+ {
1112
+ "epoch": 5.450606585788561,
1113
+ "grad_norm": 1.2743686437606812,
1114
+ "learning_rate": 0.0002,
1115
+ "loss": 0.4876,
1116
+ "step": 790
1117
+ },
1118
+ {
1119
+ "epoch": 5.4852686308492205,
1120
+ "grad_norm": 2.9798948764801025,
1121
+ "learning_rate": 0.0002,
1122
+ "loss": 0.7476,
1123
+ "step": 795
1124
+ },
1125
+ {
1126
+ "epoch": 5.519930675909879,
1127
+ "grad_norm": 0.7342365384101868,
1128
+ "learning_rate": 0.0002,
1129
+ "loss": 0.463,
1130
+ "step": 800
1131
+ },
1132
+ {
1133
+ "epoch": 5.554592720970537,
1134
+ "grad_norm": 0.5035507678985596,
1135
+ "learning_rate": 0.0002,
1136
+ "loss": 0.2116,
1137
+ "step": 805
1138
+ },
1139
+ {
1140
+ "epoch": 5.589254766031196,
1141
+ "grad_norm": 0.4394471347332001,
1142
+ "learning_rate": 0.0002,
1143
+ "loss": 0.1568,
1144
+ "step": 810
1145
+ },
1146
+ {
1147
+ "epoch": 5.6239168110918545,
1148
+ "grad_norm": 0.383515328168869,
1149
+ "learning_rate": 0.0002,
1150
+ "loss": 0.1035,
1151
+ "step": 815
1152
+ },
1153
+ {
1154
+ "epoch": 5.658578856152513,
1155
+ "grad_norm": 2.142784357070923,
1156
+ "learning_rate": 0.0002,
1157
+ "loss": 0.3458,
1158
+ "step": 820
1159
+ },
1160
+ {
1161
+ "epoch": 5.693240901213172,
1162
+ "grad_norm": 1.2484018802642822,
1163
+ "learning_rate": 0.0002,
1164
+ "loss": 0.3576,
1165
+ "step": 825
1166
+ },
1167
+ {
1168
+ "epoch": 5.72790294627383,
1169
+ "grad_norm": 2.6863198280334473,
1170
+ "learning_rate": 0.0002,
1171
+ "loss": 0.5996,
1172
+ "step": 830
1173
+ },
1174
+ {
1175
+ "epoch": 5.7625649913344885,
1176
+ "grad_norm": 1.098381757736206,
1177
+ "learning_rate": 0.0002,
1178
+ "loss": 0.4993,
1179
+ "step": 835
1180
+ },
1181
+ {
1182
+ "epoch": 5.797227036395148,
1183
+ "grad_norm": 0.5609210133552551,
1184
+ "learning_rate": 0.0002,
1185
+ "loss": 0.2608,
1186
+ "step": 840
1187
+ },
1188
+ {
1189
+ "epoch": 5.831889081455806,
1190
+ "grad_norm": 0.5123816132545471,
1191
+ "learning_rate": 0.0002,
1192
+ "loss": 0.1799,
1193
+ "step": 845
1194
+ },
1195
+ {
1196
+ "epoch": 5.866551126516464,
1197
+ "grad_norm": 0.46399134397506714,
1198
+ "learning_rate": 0.0002,
1199
+ "loss": 0.1254,
1200
+ "step": 850
1201
+ },
1202
+ {
1203
+ "epoch": 5.9012131715771226,
1204
+ "grad_norm": 0.5089249014854431,
1205
+ "learning_rate": 0.0002,
1206
+ "loss": 0.0934,
1207
+ "step": 855
1208
+ },
1209
+ {
1210
+ "epoch": 5.935875216637782,
1211
+ "grad_norm": 1.3031930923461914,
1212
+ "learning_rate": 0.0002,
1213
+ "loss": 0.6664,
1214
+ "step": 860
1215
+ },
1216
+ {
1217
+ "epoch": 5.97053726169844,
1218
+ "grad_norm": 2.294696569442749,
1219
+ "learning_rate": 0.0002,
1220
+ "loss": 0.6034,
1221
+ "step": 865
1222
+ },
1223
+ {
1224
+ "epoch": 6.0,
1225
+ "grad_norm": 2.738062620162964,
1226
+ "learning_rate": 0.0002,
1227
+ "loss": 0.587,
1228
+ "step": 870
1229
+ },
1230
+ {
1231
+ "epoch": 6.034662045060658,
1232
+ "grad_norm": 0.6086808443069458,
1233
+ "learning_rate": 0.0002,
1234
+ "loss": 0.252,
1235
+ "step": 875
1236
+ },
1237
+ {
1238
+ "epoch": 6.0693240901213175,
1239
+ "grad_norm": 0.4935630261898041,
1240
+ "learning_rate": 0.0002,
1241
+ "loss": 0.1223,
1242
+ "step": 880
1243
+ },
1244
+ {
1245
+ "epoch": 6.103986135181976,
1246
+ "grad_norm": 0.43656599521636963,
1247
+ "learning_rate": 0.0002,
1248
+ "loss": 0.0882,
1249
+ "step": 885
1250
+ },
1251
+ {
1252
+ "epoch": 6.138648180242634,
1253
+ "grad_norm": 0.2987945079803467,
1254
+ "learning_rate": 0.0002,
1255
+ "loss": 0.0629,
1256
+ "step": 890
1257
+ },
1258
+ {
1259
+ "epoch": 6.173310225303293,
1260
+ "grad_norm": 1.7174897193908691,
1261
+ "learning_rate": 0.0002,
1262
+ "loss": 0.4102,
1263
+ "step": 895
1264
+ },
1265
+ {
1266
+ "epoch": 6.2079722703639515,
1267
+ "grad_norm": 2.4946401119232178,
1268
+ "learning_rate": 0.0002,
1269
+ "loss": 0.2899,
1270
+ "step": 900
1271
+ },
1272
+ {
1273
+ "epoch": 6.24263431542461,
1274
+ "grad_norm": 2.8931374549865723,
1275
+ "learning_rate": 0.0002,
1276
+ "loss": 0.4676,
1277
+ "step": 905
1278
+ },
1279
+ {
1280
+ "epoch": 6.277296360485269,
1281
+ "grad_norm": 0.8096083998680115,
1282
+ "learning_rate": 0.0002,
1283
+ "loss": 0.3168,
1284
+ "step": 910
1285
+ },
1286
+ {
1287
+ "epoch": 6.311958405545927,
1288
+ "grad_norm": 0.4966631531715393,
1289
+ "learning_rate": 0.0002,
1290
+ "loss": 0.1399,
1291
+ "step": 915
1292
+ },
1293
+ {
1294
+ "epoch": 6.3466204506065855,
1295
+ "grad_norm": 0.46740466356277466,
1296
+ "learning_rate": 0.0002,
1297
+ "loss": 0.1037,
1298
+ "step": 920
1299
+ },
1300
+ {
1301
+ "epoch": 6.381282495667245,
1302
+ "grad_norm": 0.3550221920013428,
1303
+ "learning_rate": 0.0002,
1304
+ "loss": 0.0682,
1305
+ "step": 925
1306
+ },
1307
+ {
1308
+ "epoch": 6.415944540727903,
1309
+ "grad_norm": 1.7010166645050049,
1310
+ "learning_rate": 0.0002,
1311
+ "loss": 0.401,
1312
+ "step": 930
1313
+ },
1314
+ {
1315
+ "epoch": 6.450606585788561,
1316
+ "grad_norm": 1.4712696075439453,
1317
+ "learning_rate": 0.0002,
1318
+ "loss": 0.2843,
1319
+ "step": 935
1320
+ },
1321
+ {
1322
+ "epoch": 6.4852686308492205,
1323
+ "grad_norm": 1.702062964439392,
1324
+ "learning_rate": 0.0002,
1325
+ "loss": 0.5166,
1326
+ "step": 940
1327
+ },
1328
+ {
1329
+ "epoch": 6.519930675909879,
1330
+ "grad_norm": 0.6730090379714966,
1331
+ "learning_rate": 0.0002,
1332
+ "loss": 0.3467,
1333
+ "step": 945
1334
+ },
1335
+ {
1336
+ "epoch": 6.554592720970537,
1337
+ "grad_norm": 0.6367856860160828,
1338
+ "learning_rate": 0.0002,
1339
+ "loss": 0.1564,
1340
+ "step": 950
1341
+ },
1342
+ {
1343
+ "epoch": 6.589254766031196,
1344
+ "grad_norm": 0.5671469569206238,
1345
+ "learning_rate": 0.0002,
1346
+ "loss": 0.1267,
1347
+ "step": 955
1348
+ },
1349
+ {
1350
+ "epoch": 6.6239168110918545,
1351
+ "grad_norm": 0.29594796895980835,
1352
+ "learning_rate": 0.0002,
1353
+ "loss": 0.0927,
1354
+ "step": 960
1355
+ },
1356
+ {
1357
+ "epoch": 6.658578856152513,
1358
+ "grad_norm": 0.6945505738258362,
1359
+ "learning_rate": 0.0002,
1360
+ "loss": 0.0982,
1361
+ "step": 965
1362
+ },
1363
+ {
1364
+ "epoch": 6.693240901213172,
1365
+ "grad_norm": 1.2007991075515747,
1366
+ "learning_rate": 0.0002,
1367
+ "loss": 0.4829,
1368
+ "step": 970
1369
+ },
1370
+ {
1371
+ "epoch": 6.72790294627383,
1372
+ "grad_norm": 4.258643627166748,
1373
+ "learning_rate": 0.0002,
1374
+ "loss": 0.5014,
1375
+ "step": 975
1376
+ },
1377
+ {
1378
+ "epoch": 6.7625649913344885,
1379
+ "grad_norm": 1.2368519306182861,
1380
+ "learning_rate": 0.0002,
1381
+ "loss": 0.4639,
1382
+ "step": 980
1383
+ },
1384
+ {
1385
+ "epoch": 6.797227036395148,
1386
+ "grad_norm": 0.5854914784431458,
1387
+ "learning_rate": 0.0002,
1388
+ "loss": 0.1885,
1389
+ "step": 985
1390
+ },
1391
+ {
1392
+ "epoch": 6.831889081455806,
1393
+ "grad_norm": 0.433727890253067,
1394
+ "learning_rate": 0.0002,
1395
+ "loss": 0.1182,
1396
+ "step": 990
1397
+ },
1398
+ {
1399
+ "epoch": 6.866551126516464,
1400
+ "grad_norm": 0.37968766689300537,
1401
+ "learning_rate": 0.0002,
1402
+ "loss": 0.0907,
1403
+ "step": 995
1404
+ },
1405
+ {
1406
+ "epoch": 6.9012131715771226,
1407
+ "grad_norm": 0.49255871772766113,
1408
+ "learning_rate": 0.0002,
1409
+ "loss": 0.0748,
1410
+ "step": 1000
1411
+ },
1412
+ {
1413
+ "epoch": 6.935875216637782,
1414
+ "grad_norm": 0.8562117218971252,
1415
+ "learning_rate": 0.0002,
1416
+ "loss": 0.301,
1417
+ "step": 1005
1418
+ },
1419
+ {
1420
+ "epoch": 6.97053726169844,
1421
+ "grad_norm": 2.18452787399292,
1422
+ "learning_rate": 0.0002,
1423
+ "loss": 0.5265,
1424
+ "step": 1010
1425
+ },
1426
+ {
1427
+ "epoch": 7.0,
1428
+ "grad_norm": 5.248262405395508,
1429
+ "learning_rate": 0.0002,
1430
+ "loss": 0.4677,
1431
+ "step": 1015
1432
+ }
1433
+ ],
1434
+ "logging_steps": 5,
1435
+ "max_steps": 1440,
1436
+ "num_input_tokens_seen": 0,
1437
+ "num_train_epochs": 10,
1438
+ "save_steps": 500,
1439
+ "stateful_callbacks": {
1440
+ "TrainerControl": {
1441
+ "args": {
1442
+ "should_epoch_stop": false,
1443
+ "should_evaluate": false,
1444
+ "should_log": false,
1445
+ "should_save": true,
1446
+ "should_training_stop": false
1447
+ },
1448
+ "attributes": {}
1449
+ }
1450
+ },
1451
+ "total_flos": 2.366970120384307e+16,
1452
+ "train_batch_size": 2,
1453
+ "trial_name": null,
1454
+ "trial_params": null
1455
+ }
checkpoint-1015/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:809a1a5c9369a216b8a4d6e1c008ebfd2034bae620a7456bafd493b02b881a58
3
+ size 5624
checkpoint-1015/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1160/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/Phi-4-mini-instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.2
checkpoint-1160/adapter_config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "microsoft/Phi-4-mini-instruct",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 32,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.05,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "r": 16,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": [
27
+ "v_proj",
28
+ "k_proj",
29
+ "q_proj",
30
+ "down_proj",
31
+ "o_proj",
32
+ "gate_proj",
33
+ "up_proj"
34
+ ],
35
+ "task_type": "CAUSAL_LM",
36
+ "trainable_token_indices": null,
37
+ "use_dora": false,
38
+ "use_rslora": false
39
+ }
checkpoint-1160/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:394bc7c676d24ecff6b05cedfa2c4df52c9da9f034d2d0e5f4a4b69dd76f1d0d
3
+ size 35668592
checkpoint-1160/added_tokens.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|/tool_call|>": 200026,
3
+ "<|/tool|>": 200024,
4
+ "<|assistant|>": 200019,
5
+ "<|end|>": 200020,
6
+ "<|system|>": 200022,
7
+ "<|tag|>": 200028,
8
+ "<|tool_call|>": 200025,
9
+ "<|tool_response|>": 200027,
10
+ "<|tool|>": 200023,
11
+ "<|user|>": 200021
12
+ }
checkpoint-1160/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1160/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f397552e938c99a451111c00c20c30925abd9cf56bce32a4de25063d8b2bb2a
3
+ size 18256762
checkpoint-1160/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:049aa61b6fdbbca66e0b99d3a611f23d30e85c99c5762395ef88e735640d7730
3
+ size 14244
checkpoint-1160/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79763ab31b6efc519aa37c2bf6d03bfe87dd23be12eaf579ec750bf1c06975fc
3
+ size 1064
checkpoint-1160/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|endoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<|endoftext|>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
checkpoint-1160/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d7f47443257fe193e8dcb1e6912235832f416fd25161c021f77cb63163cd44e
3
+ size 15524193
checkpoint-1160/tokenizer_config.json ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": false,
5
+ "added_tokens_decoder": {
6
+ "199999": {
7
+ "content": "<|endoftext|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "200018": {
15
+ "content": "<|endofprompt|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "200019": {
23
+ "content": "<|assistant|>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": true,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "200020": {
31
+ "content": "<|end|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": true,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "200021": {
39
+ "content": "<|user|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": true,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "200022": {
47
+ "content": "<|system|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": true,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "200023": {
55
+ "content": "<|tool|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": true,
59
+ "single_word": false,
60
+ "special": false
61
+ },
62
+ "200024": {
63
+ "content": "<|/tool|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": true,
67
+ "single_word": false,
68
+ "special": false
69
+ },
70
+ "200025": {
71
+ "content": "<|tool_call|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": true,
75
+ "single_word": false,
76
+ "special": false
77
+ },
78
+ "200026": {
79
+ "content": "<|/tool_call|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": true,
83
+ "single_word": false,
84
+ "special": false
85
+ },
86
+ "200027": {
87
+ "content": "<|tool_response|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": true,
91
+ "single_word": false,
92
+ "special": false
93
+ },
94
+ "200028": {
95
+ "content": "<|tag|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": true,
99
+ "single_word": false,
100
+ "special": true
101
+ }
102
+ },
103
+ "bos_token": "<|endoftext|>",
104
+ "chat_template": "{% for message in messages %}{% if message['role'] == 'system' and 'tools' in message and message['tools'] is not none %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|tool|>' + message['tools'] + '<|/tool|>' + '<|end|>' }}{% else %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|end|>' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>' }}{% else %}{{ eos_token }}{% endif %}",
105
+ "clean_up_tokenization_spaces": false,
106
+ "eos_token": "<|endoftext|>",
107
+ "extra_special_tokens": {},
108
+ "model_max_length": 131072,
109
+ "pad_token": "<|endoftext|>",
110
+ "tokenizer_class": "GPT2Tokenizer",
111
+ "unk_token": "<|endoftext|>"
112
+ }
checkpoint-1160/trainer_state.json ADDED
@@ -0,0 +1,1658 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 8.0,
6
+ "eval_steps": 500,
7
+ "global_step": 1160,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.03466204506065858,
14
+ "grad_norm": 1.530611515045166,
15
+ "learning_rate": 0.0002,
16
+ "loss": 3.0151,
17
+ "step": 5
18
+ },
19
+ {
20
+ "epoch": 0.06932409012131716,
21
+ "grad_norm": 1.7004058361053467,
22
+ "learning_rate": 0.0002,
23
+ "loss": 2.0235,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.10398613518197573,
28
+ "grad_norm": 1.933908462524414,
29
+ "learning_rate": 0.0002,
30
+ "loss": 1.1225,
31
+ "step": 15
32
+ },
33
+ {
34
+ "epoch": 0.1386481802426343,
35
+ "grad_norm": 0.9951248168945312,
36
+ "learning_rate": 0.0002,
37
+ "loss": 0.5422,
38
+ "step": 20
39
+ },
40
+ {
41
+ "epoch": 0.1733102253032929,
42
+ "grad_norm": 6.152623176574707,
43
+ "learning_rate": 0.0002,
44
+ "loss": 1.5639,
45
+ "step": 25
46
+ },
47
+ {
48
+ "epoch": 0.20797227036395147,
49
+ "grad_norm": 8.008278846740723,
50
+ "learning_rate": 0.0002,
51
+ "loss": 2.6486,
52
+ "step": 30
53
+ },
54
+ {
55
+ "epoch": 0.24263431542461006,
56
+ "grad_norm": 4.960943222045898,
57
+ "learning_rate": 0.0002,
58
+ "loss": 2.6059,
59
+ "step": 35
60
+ },
61
+ {
62
+ "epoch": 0.2772963604852686,
63
+ "grad_norm": 4.607645511627197,
64
+ "learning_rate": 0.0002,
65
+ "loss": 1.6898,
66
+ "step": 40
67
+ },
68
+ {
69
+ "epoch": 0.3119584055459272,
70
+ "grad_norm": 0.8448249101638794,
71
+ "learning_rate": 0.0002,
72
+ "loss": 0.799,
73
+ "step": 45
74
+ },
75
+ {
76
+ "epoch": 0.3466204506065858,
77
+ "grad_norm": 0.46238261461257935,
78
+ "learning_rate": 0.0002,
79
+ "loss": 0.5374,
80
+ "step": 50
81
+ },
82
+ {
83
+ "epoch": 0.38128249566724437,
84
+ "grad_norm": 0.3575257956981659,
85
+ "learning_rate": 0.0002,
86
+ "loss": 0.4247,
87
+ "step": 55
88
+ },
89
+ {
90
+ "epoch": 0.41594454072790293,
91
+ "grad_norm": 2.5151493549346924,
92
+ "learning_rate": 0.0002,
93
+ "loss": 0.7472,
94
+ "step": 60
95
+ },
96
+ {
97
+ "epoch": 0.4506065857885615,
98
+ "grad_norm": 17.38052749633789,
99
+ "learning_rate": 0.0002,
100
+ "loss": 1.8466,
101
+ "step": 65
102
+ },
103
+ {
104
+ "epoch": 0.4852686308492201,
105
+ "grad_norm": 15.523968696594238,
106
+ "learning_rate": 0.0002,
107
+ "loss": 2.1105,
108
+ "step": 70
109
+ },
110
+ {
111
+ "epoch": 0.5199306759098787,
112
+ "grad_norm": 1.0907574892044067,
113
+ "learning_rate": 0.0002,
114
+ "loss": 1.1052,
115
+ "step": 75
116
+ },
117
+ {
118
+ "epoch": 0.5545927209705372,
119
+ "grad_norm": 0.5225581526756287,
120
+ "learning_rate": 0.0002,
121
+ "loss": 0.5663,
122
+ "step": 80
123
+ },
124
+ {
125
+ "epoch": 0.5892547660311959,
126
+ "grad_norm": 0.3306778073310852,
127
+ "learning_rate": 0.0002,
128
+ "loss": 0.4648,
129
+ "step": 85
130
+ },
131
+ {
132
+ "epoch": 0.6239168110918544,
133
+ "grad_norm": 0.33595138788223267,
134
+ "learning_rate": 0.0002,
135
+ "loss": 0.3762,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 0.658578856152513,
140
+ "grad_norm": 1.978458285331726,
141
+ "learning_rate": 0.0002,
142
+ "loss": 0.9162,
143
+ "step": 95
144
+ },
145
+ {
146
+ "epoch": 0.6932409012131716,
147
+ "grad_norm": 1.1226632595062256,
148
+ "learning_rate": 0.0002,
149
+ "loss": 1.5477,
150
+ "step": 100
151
+ },
152
+ {
153
+ "epoch": 0.7279029462738301,
154
+ "grad_norm": 22.263992309570312,
155
+ "learning_rate": 0.0002,
156
+ "loss": 1.8063,
157
+ "step": 105
158
+ },
159
+ {
160
+ "epoch": 0.7625649913344887,
161
+ "grad_norm": 1.3690563440322876,
162
+ "learning_rate": 0.0002,
163
+ "loss": 1.3102,
164
+ "step": 110
165
+ },
166
+ {
167
+ "epoch": 0.7972270363951474,
168
+ "grad_norm": 0.5651267766952515,
169
+ "learning_rate": 0.0002,
170
+ "loss": 0.553,
171
+ "step": 115
172
+ },
173
+ {
174
+ "epoch": 0.8318890814558059,
175
+ "grad_norm": 0.3272489011287689,
176
+ "learning_rate": 0.0002,
177
+ "loss": 0.4813,
178
+ "step": 120
179
+ },
180
+ {
181
+ "epoch": 0.8665511265164645,
182
+ "grad_norm": 0.30475500226020813,
183
+ "learning_rate": 0.0002,
184
+ "loss": 0.3746,
185
+ "step": 125
186
+ },
187
+ {
188
+ "epoch": 0.901213171577123,
189
+ "grad_norm": 0.2812097370624542,
190
+ "learning_rate": 0.0002,
191
+ "loss": 0.284,
192
+ "step": 130
193
+ },
194
+ {
195
+ "epoch": 0.9358752166377816,
196
+ "grad_norm": 1.159839391708374,
197
+ "learning_rate": 0.0002,
198
+ "loss": 1.5179,
199
+ "step": 135
200
+ },
201
+ {
202
+ "epoch": 0.9705372616984402,
203
+ "grad_norm": 4.740174770355225,
204
+ "learning_rate": 0.0002,
205
+ "loss": 1.549,
206
+ "step": 140
207
+ },
208
+ {
209
+ "epoch": 1.0,
210
+ "grad_norm": 2.613008499145508,
211
+ "learning_rate": 0.0002,
212
+ "loss": 1.3938,
213
+ "step": 145
214
+ },
215
+ {
216
+ "epoch": 1.0346620450606585,
217
+ "grad_norm": 0.31811827421188354,
218
+ "learning_rate": 0.0002,
219
+ "loss": 0.5353,
220
+ "step": 150
221
+ },
222
+ {
223
+ "epoch": 1.0693240901213172,
224
+ "grad_norm": 0.42897579073905945,
225
+ "learning_rate": 0.0002,
226
+ "loss": 0.4452,
227
+ "step": 155
228
+ },
229
+ {
230
+ "epoch": 1.1039861351819757,
231
+ "grad_norm": 0.28854838013648987,
232
+ "learning_rate": 0.0002,
233
+ "loss": 0.3563,
234
+ "step": 160
235
+ },
236
+ {
237
+ "epoch": 1.1386481802426343,
238
+ "grad_norm": 0.32319992780685425,
239
+ "learning_rate": 0.0002,
240
+ "loss": 0.2697,
241
+ "step": 165
242
+ },
243
+ {
244
+ "epoch": 1.173310225303293,
245
+ "grad_norm": 1.0144641399383545,
246
+ "learning_rate": 0.0002,
247
+ "loss": 1.3199,
248
+ "step": 170
249
+ },
250
+ {
251
+ "epoch": 1.2079722703639515,
252
+ "grad_norm": 2.1387648582458496,
253
+ "learning_rate": 0.0002,
254
+ "loss": 1.1948,
255
+ "step": 175
256
+ },
257
+ {
258
+ "epoch": 1.24263431542461,
259
+ "grad_norm": 5.240429401397705,
260
+ "learning_rate": 0.0002,
261
+ "loss": 1.2138,
262
+ "step": 180
263
+ },
264
+ {
265
+ "epoch": 1.2772963604852685,
266
+ "grad_norm": 0.5809195637702942,
267
+ "learning_rate": 0.0002,
268
+ "loss": 0.7417,
269
+ "step": 185
270
+ },
271
+ {
272
+ "epoch": 1.3119584055459272,
273
+ "grad_norm": 0.3426031768321991,
274
+ "learning_rate": 0.0002,
275
+ "loss": 0.4541,
276
+ "step": 190
277
+ },
278
+ {
279
+ "epoch": 1.3466204506065858,
280
+ "grad_norm": 0.34089571237564087,
281
+ "learning_rate": 0.0002,
282
+ "loss": 0.3709,
283
+ "step": 195
284
+ },
285
+ {
286
+ "epoch": 1.3812824956672443,
287
+ "grad_norm": 0.2676282823085785,
288
+ "learning_rate": 0.0002,
289
+ "loss": 0.2981,
290
+ "step": 200
291
+ },
292
+ {
293
+ "epoch": 1.415944540727903,
294
+ "grad_norm": 1.8662705421447754,
295
+ "learning_rate": 0.0002,
296
+ "loss": 0.8353,
297
+ "step": 205
298
+ },
299
+ {
300
+ "epoch": 1.4506065857885615,
301
+ "grad_norm": 3.2310688495635986,
302
+ "learning_rate": 0.0002,
303
+ "loss": 1.2188,
304
+ "step": 210
305
+ },
306
+ {
307
+ "epoch": 1.48526863084922,
308
+ "grad_norm": 2.255415916442871,
309
+ "learning_rate": 0.0002,
310
+ "loss": 1.1677,
311
+ "step": 215
312
+ },
313
+ {
314
+ "epoch": 1.5199306759098787,
315
+ "grad_norm": 0.5544691681861877,
316
+ "learning_rate": 0.0002,
317
+ "loss": 0.799,
318
+ "step": 220
319
+ },
320
+ {
321
+ "epoch": 1.5545927209705372,
322
+ "grad_norm": 0.4003375172615051,
323
+ "learning_rate": 0.0002,
324
+ "loss": 0.4786,
325
+ "step": 225
326
+ },
327
+ {
328
+ "epoch": 1.5892547660311958,
329
+ "grad_norm": 0.3774619698524475,
330
+ "learning_rate": 0.0002,
331
+ "loss": 0.4233,
332
+ "step": 230
333
+ },
334
+ {
335
+ "epoch": 1.6239168110918545,
336
+ "grad_norm": 0.352490097284317,
337
+ "learning_rate": 0.0002,
338
+ "loss": 0.3332,
339
+ "step": 235
340
+ },
341
+ {
342
+ "epoch": 1.658578856152513,
343
+ "grad_norm": 0.2637154459953308,
344
+ "learning_rate": 0.0002,
345
+ "loss": 0.2438,
346
+ "step": 240
347
+ },
348
+ {
349
+ "epoch": 1.6932409012131715,
350
+ "grad_norm": 1.3437107801437378,
351
+ "learning_rate": 0.0002,
352
+ "loss": 1.4351,
353
+ "step": 245
354
+ },
355
+ {
356
+ "epoch": 1.7279029462738302,
357
+ "grad_norm": 2.647561550140381,
358
+ "learning_rate": 0.0002,
359
+ "loss": 1.0698,
360
+ "step": 250
361
+ },
362
+ {
363
+ "epoch": 1.7625649913344887,
364
+ "grad_norm": 0.6839751601219177,
365
+ "learning_rate": 0.0002,
366
+ "loss": 0.7411,
367
+ "step": 255
368
+ },
369
+ {
370
+ "epoch": 1.7972270363951472,
371
+ "grad_norm": 0.4790812134742737,
372
+ "learning_rate": 0.0002,
373
+ "loss": 0.5009,
374
+ "step": 260
375
+ },
376
+ {
377
+ "epoch": 1.831889081455806,
378
+ "grad_norm": 0.36322328448295593,
379
+ "learning_rate": 0.0002,
380
+ "loss": 0.4014,
381
+ "step": 265
382
+ },
383
+ {
384
+ "epoch": 1.8665511265164645,
385
+ "grad_norm": 0.31694507598876953,
386
+ "learning_rate": 0.0002,
387
+ "loss": 0.3441,
388
+ "step": 270
389
+ },
390
+ {
391
+ "epoch": 1.901213171577123,
392
+ "grad_norm": 0.24292677640914917,
393
+ "learning_rate": 0.0002,
394
+ "loss": 0.2619,
395
+ "step": 275
396
+ },
397
+ {
398
+ "epoch": 1.9358752166377817,
399
+ "grad_norm": 1.133062720298767,
400
+ "learning_rate": 0.0002,
401
+ "loss": 1.1564,
402
+ "step": 280
403
+ },
404
+ {
405
+ "epoch": 1.9705372616984402,
406
+ "grad_norm": 10.754274368286133,
407
+ "learning_rate": 0.0002,
408
+ "loss": 1.436,
409
+ "step": 285
410
+ },
411
+ {
412
+ "epoch": 2.0,
413
+ "grad_norm": 1.6346553564071655,
414
+ "learning_rate": 0.0002,
415
+ "loss": 1.3215,
416
+ "step": 290
417
+ },
418
+ {
419
+ "epoch": 2.0346620450606587,
420
+ "grad_norm": 0.7156389355659485,
421
+ "learning_rate": 0.0002,
422
+ "loss": 0.551,
423
+ "step": 295
424
+ },
425
+ {
426
+ "epoch": 2.069324090121317,
427
+ "grad_norm": 0.3842258155345917,
428
+ "learning_rate": 0.0002,
429
+ "loss": 0.3783,
430
+ "step": 300
431
+ },
432
+ {
433
+ "epoch": 2.1039861351819757,
434
+ "grad_norm": 0.35967278480529785,
435
+ "learning_rate": 0.0002,
436
+ "loss": 0.3124,
437
+ "step": 305
438
+ },
439
+ {
440
+ "epoch": 2.1386481802426345,
441
+ "grad_norm": 0.296977162361145,
442
+ "learning_rate": 0.0002,
443
+ "loss": 0.2367,
444
+ "step": 310
445
+ },
446
+ {
447
+ "epoch": 2.1733102253032928,
448
+ "grad_norm": 1.6834601163864136,
449
+ "learning_rate": 0.0002,
450
+ "loss": 0.7685,
451
+ "step": 315
452
+ },
453
+ {
454
+ "epoch": 2.2079722703639515,
455
+ "grad_norm": 5.758884906768799,
456
+ "learning_rate": 0.0002,
457
+ "loss": 1.0063,
458
+ "step": 320
459
+ },
460
+ {
461
+ "epoch": 2.2426343154246102,
462
+ "grad_norm": 15.24948501586914,
463
+ "learning_rate": 0.0002,
464
+ "loss": 1.231,
465
+ "step": 325
466
+ },
467
+ {
468
+ "epoch": 2.2772963604852685,
469
+ "grad_norm": 0.599730372428894,
470
+ "learning_rate": 0.0002,
471
+ "loss": 0.6392,
472
+ "step": 330
473
+ },
474
+ {
475
+ "epoch": 2.3119584055459272,
476
+ "grad_norm": 0.5307044982910156,
477
+ "learning_rate": 0.0002,
478
+ "loss": 0.3804,
479
+ "step": 335
480
+ },
481
+ {
482
+ "epoch": 2.346620450606586,
483
+ "grad_norm": 0.33558061718940735,
484
+ "learning_rate": 0.0002,
485
+ "loss": 0.3282,
486
+ "step": 340
487
+ },
488
+ {
489
+ "epoch": 2.3812824956672443,
490
+ "grad_norm": 0.2716732919216156,
491
+ "learning_rate": 0.0002,
492
+ "loss": 0.2429,
493
+ "step": 345
494
+ },
495
+ {
496
+ "epoch": 2.415944540727903,
497
+ "grad_norm": 2.454636812210083,
498
+ "learning_rate": 0.0002,
499
+ "loss": 0.5396,
500
+ "step": 350
501
+ },
502
+ {
503
+ "epoch": 2.4506065857885613,
504
+ "grad_norm": 13.286089897155762,
505
+ "learning_rate": 0.0002,
506
+ "loss": 1.0545,
507
+ "step": 355
508
+ },
509
+ {
510
+ "epoch": 2.48526863084922,
511
+ "grad_norm": 12.619502067565918,
512
+ "learning_rate": 0.0002,
513
+ "loss": 1.1547,
514
+ "step": 360
515
+ },
516
+ {
517
+ "epoch": 2.5199306759098787,
518
+ "grad_norm": 0.6347368359565735,
519
+ "learning_rate": 0.0002,
520
+ "loss": 0.7136,
521
+ "step": 365
522
+ },
523
+ {
524
+ "epoch": 2.554592720970537,
525
+ "grad_norm": 0.44485101103782654,
526
+ "learning_rate": 0.0002,
527
+ "loss": 0.3994,
528
+ "step": 370
529
+ },
530
+ {
531
+ "epoch": 2.5892547660311958,
532
+ "grad_norm": 0.36494728922843933,
533
+ "learning_rate": 0.0002,
534
+ "loss": 0.3107,
535
+ "step": 375
536
+ },
537
+ {
538
+ "epoch": 2.6239168110918545,
539
+ "grad_norm": 0.322171688079834,
540
+ "learning_rate": 0.0002,
541
+ "loss": 0.2753,
542
+ "step": 380
543
+ },
544
+ {
545
+ "epoch": 2.6585788561525128,
546
+ "grad_norm": 0.9659174084663391,
547
+ "learning_rate": 0.0002,
548
+ "loss": 0.2948,
549
+ "step": 385
550
+ },
551
+ {
552
+ "epoch": 2.6932409012131715,
553
+ "grad_norm": 0.9371129870414734,
554
+ "learning_rate": 0.0002,
555
+ "loss": 1.0286,
556
+ "step": 390
557
+ },
558
+ {
559
+ "epoch": 2.7279029462738302,
560
+ "grad_norm": 3.4619617462158203,
561
+ "learning_rate": 0.0002,
562
+ "loss": 1.0745,
563
+ "step": 395
564
+ },
565
+ {
566
+ "epoch": 2.7625649913344885,
567
+ "grad_norm": 0.6884852051734924,
568
+ "learning_rate": 0.0002,
569
+ "loss": 0.7637,
570
+ "step": 400
571
+ },
572
+ {
573
+ "epoch": 2.7972270363951472,
574
+ "grad_norm": 0.4440446197986603,
575
+ "learning_rate": 0.0002,
576
+ "loss": 0.4331,
577
+ "step": 405
578
+ },
579
+ {
580
+ "epoch": 2.831889081455806,
581
+ "grad_norm": 0.37561893463134766,
582
+ "learning_rate": 0.0002,
583
+ "loss": 0.3667,
584
+ "step": 410
585
+ },
586
+ {
587
+ "epoch": 2.8665511265164643,
588
+ "grad_norm": 0.320077121257782,
589
+ "learning_rate": 0.0002,
590
+ "loss": 0.2769,
591
+ "step": 415
592
+ },
593
+ {
594
+ "epoch": 2.901213171577123,
595
+ "grad_norm": 1.4914495944976807,
596
+ "learning_rate": 0.0002,
597
+ "loss": 0.4493,
598
+ "step": 420
599
+ },
600
+ {
601
+ "epoch": 2.9358752166377817,
602
+ "grad_norm": 1.164036750793457,
603
+ "learning_rate": 0.0002,
604
+ "loss": 1.1276,
605
+ "step": 425
606
+ },
607
+ {
608
+ "epoch": 2.97053726169844,
609
+ "grad_norm": 5.013108253479004,
610
+ "learning_rate": 0.0002,
611
+ "loss": 1.0841,
612
+ "step": 430
613
+ },
614
+ {
615
+ "epoch": 3.0,
616
+ "grad_norm": 2.2247564792633057,
617
+ "learning_rate": 0.0002,
618
+ "loss": 0.7636,
619
+ "step": 435
620
+ },
621
+ {
622
+ "epoch": 3.0346620450606587,
623
+ "grad_norm": 0.3730102479457855,
624
+ "learning_rate": 0.0002,
625
+ "loss": 0.4291,
626
+ "step": 440
627
+ },
628
+ {
629
+ "epoch": 3.069324090121317,
630
+ "grad_norm": 0.36571791768074036,
631
+ "learning_rate": 0.0002,
632
+ "loss": 0.3155,
633
+ "step": 445
634
+ },
635
+ {
636
+ "epoch": 3.1039861351819757,
637
+ "grad_norm": 0.34427550435066223,
638
+ "learning_rate": 0.0002,
639
+ "loss": 0.2297,
640
+ "step": 450
641
+ },
642
+ {
643
+ "epoch": 3.1386481802426345,
644
+ "grad_norm": 0.3725241422653198,
645
+ "learning_rate": 0.0002,
646
+ "loss": 0.173,
647
+ "step": 455
648
+ },
649
+ {
650
+ "epoch": 3.1733102253032928,
651
+ "grad_norm": 0.9735671877861023,
652
+ "learning_rate": 0.0002,
653
+ "loss": 0.8876,
654
+ "step": 460
655
+ },
656
+ {
657
+ "epoch": 3.2079722703639515,
658
+ "grad_norm": 3.0348145961761475,
659
+ "learning_rate": 0.0002,
660
+ "loss": 0.7825,
661
+ "step": 465
662
+ },
663
+ {
664
+ "epoch": 3.2426343154246102,
665
+ "grad_norm": 1.4603136777877808,
666
+ "learning_rate": 0.0002,
667
+ "loss": 0.8017,
668
+ "step": 470
669
+ },
670
+ {
671
+ "epoch": 3.2772963604852685,
672
+ "grad_norm": 0.6849704384803772,
673
+ "learning_rate": 0.0002,
674
+ "loss": 0.6029,
675
+ "step": 475
676
+ },
677
+ {
678
+ "epoch": 3.3119584055459272,
679
+ "grad_norm": 0.45950087904930115,
680
+ "learning_rate": 0.0002,
681
+ "loss": 0.3388,
682
+ "step": 480
683
+ },
684
+ {
685
+ "epoch": 3.346620450606586,
686
+ "grad_norm": 0.3234940469264984,
687
+ "learning_rate": 0.0002,
688
+ "loss": 0.2635,
689
+ "step": 485
690
+ },
691
+ {
692
+ "epoch": 3.3812824956672443,
693
+ "grad_norm": 0.3088044822216034,
694
+ "learning_rate": 0.0002,
695
+ "loss": 0.1867,
696
+ "step": 490
697
+ },
698
+ {
699
+ "epoch": 3.415944540727903,
700
+ "grad_norm": 0.36887720227241516,
701
+ "learning_rate": 0.0002,
702
+ "loss": 0.1653,
703
+ "step": 495
704
+ },
705
+ {
706
+ "epoch": 3.4506065857885613,
707
+ "grad_norm": 1.041858196258545,
708
+ "learning_rate": 0.0002,
709
+ "loss": 0.9041,
710
+ "step": 500
711
+ },
712
+ {
713
+ "epoch": 3.48526863084922,
714
+ "grad_norm": 1.4774988889694214,
715
+ "learning_rate": 0.0002,
716
+ "loss": 0.9789,
717
+ "step": 505
718
+ },
719
+ {
720
+ "epoch": 3.5199306759098787,
721
+ "grad_norm": 0.6804758310317993,
722
+ "learning_rate": 0.0002,
723
+ "loss": 0.5891,
724
+ "step": 510
725
+ },
726
+ {
727
+ "epoch": 3.554592720970537,
728
+ "grad_norm": 0.43344879150390625,
729
+ "learning_rate": 0.0002,
730
+ "loss": 0.3632,
731
+ "step": 515
732
+ },
733
+ {
734
+ "epoch": 3.5892547660311958,
735
+ "grad_norm": 0.4160469174385071,
736
+ "learning_rate": 0.0002,
737
+ "loss": 0.2734,
738
+ "step": 520
739
+ },
740
+ {
741
+ "epoch": 3.6239168110918545,
742
+ "grad_norm": 0.35103052854537964,
743
+ "learning_rate": 0.0002,
744
+ "loss": 0.2215,
745
+ "step": 525
746
+ },
747
+ {
748
+ "epoch": 3.6585788561525128,
749
+ "grad_norm": 1.083409309387207,
750
+ "learning_rate": 0.0002,
751
+ "loss": 0.2623,
752
+ "step": 530
753
+ },
754
+ {
755
+ "epoch": 3.6932409012131715,
756
+ "grad_norm": 1.2548085451126099,
757
+ "learning_rate": 0.0002,
758
+ "loss": 0.9395,
759
+ "step": 535
760
+ },
761
+ {
762
+ "epoch": 3.7279029462738302,
763
+ "grad_norm": 2.565399169921875,
764
+ "learning_rate": 0.0002,
765
+ "loss": 0.9097,
766
+ "step": 540
767
+ },
768
+ {
769
+ "epoch": 3.7625649913344885,
770
+ "grad_norm": 0.6658923625946045,
771
+ "learning_rate": 0.0002,
772
+ "loss": 0.739,
773
+ "step": 545
774
+ },
775
+ {
776
+ "epoch": 3.7972270363951472,
777
+ "grad_norm": 0.4989807605743408,
778
+ "learning_rate": 0.0002,
779
+ "loss": 0.396,
780
+ "step": 550
781
+ },
782
+ {
783
+ "epoch": 3.831889081455806,
784
+ "grad_norm": 0.39474496245384216,
785
+ "learning_rate": 0.0002,
786
+ "loss": 0.2809,
787
+ "step": 555
788
+ },
789
+ {
790
+ "epoch": 3.8665511265164643,
791
+ "grad_norm": 0.38600996136665344,
792
+ "learning_rate": 0.0002,
793
+ "loss": 0.2254,
794
+ "step": 560
795
+ },
796
+ {
797
+ "epoch": 3.901213171577123,
798
+ "grad_norm": 0.3662823736667633,
799
+ "learning_rate": 0.0002,
800
+ "loss": 0.167,
801
+ "step": 565
802
+ },
803
+ {
804
+ "epoch": 3.9358752166377817,
805
+ "grad_norm": 1.349672794342041,
806
+ "learning_rate": 0.0002,
807
+ "loss": 1.1593,
808
+ "step": 570
809
+ },
810
+ {
811
+ "epoch": 3.97053726169844,
812
+ "grad_norm": 2.3923165798187256,
813
+ "learning_rate": 0.0002,
814
+ "loss": 0.8778,
815
+ "step": 575
816
+ },
817
+ {
818
+ "epoch": 4.0,
819
+ "grad_norm": 0.7578555345535278,
820
+ "learning_rate": 0.0002,
821
+ "loss": 0.6897,
822
+ "step": 580
823
+ },
824
+ {
825
+ "epoch": 4.034662045060658,
826
+ "grad_norm": 0.5052911043167114,
827
+ "learning_rate": 0.0002,
828
+ "loss": 0.3913,
829
+ "step": 585
830
+ },
831
+ {
832
+ "epoch": 4.0693240901213175,
833
+ "grad_norm": 0.5212499499320984,
834
+ "learning_rate": 0.0002,
835
+ "loss": 0.2326,
836
+ "step": 590
837
+ },
838
+ {
839
+ "epoch": 4.103986135181976,
840
+ "grad_norm": 0.452105313539505,
841
+ "learning_rate": 0.0002,
842
+ "loss": 0.1846,
843
+ "step": 595
844
+ },
845
+ {
846
+ "epoch": 4.138648180242634,
847
+ "grad_norm": 0.4193221926689148,
848
+ "learning_rate": 0.0002,
849
+ "loss": 0.1359,
850
+ "step": 600
851
+ },
852
+ {
853
+ "epoch": 4.173310225303293,
854
+ "grad_norm": 2.3956053256988525,
855
+ "learning_rate": 0.0002,
856
+ "loss": 0.3795,
857
+ "step": 605
858
+ },
859
+ {
860
+ "epoch": 4.2079722703639515,
861
+ "grad_norm": 1.946535348892212,
862
+ "learning_rate": 0.0002,
863
+ "loss": 0.579,
864
+ "step": 610
865
+ },
866
+ {
867
+ "epoch": 4.24263431542461,
868
+ "grad_norm": 1.874873161315918,
869
+ "learning_rate": 0.0002,
870
+ "loss": 0.7528,
871
+ "step": 615
872
+ },
873
+ {
874
+ "epoch": 4.277296360485269,
875
+ "grad_norm": 0.6922146081924438,
876
+ "learning_rate": 0.0002,
877
+ "loss": 0.4398,
878
+ "step": 620
879
+ },
880
+ {
881
+ "epoch": 4.311958405545927,
882
+ "grad_norm": 0.5228244662284851,
883
+ "learning_rate": 0.0002,
884
+ "loss": 0.2615,
885
+ "step": 625
886
+ },
887
+ {
888
+ "epoch": 4.3466204506065855,
889
+ "grad_norm": 0.34687915444374084,
890
+ "learning_rate": 0.0002,
891
+ "loss": 0.191,
892
+ "step": 630
893
+ },
894
+ {
895
+ "epoch": 4.381282495667245,
896
+ "grad_norm": 0.4160069525241852,
897
+ "learning_rate": 0.0002,
898
+ "loss": 0.1434,
899
+ "step": 635
900
+ },
901
+ {
902
+ "epoch": 4.415944540727903,
903
+ "grad_norm": 1.468666434288025,
904
+ "learning_rate": 0.0002,
905
+ "loss": 0.61,
906
+ "step": 640
907
+ },
908
+ {
909
+ "epoch": 4.450606585788561,
910
+ "grad_norm": 3.174201488494873,
911
+ "learning_rate": 0.0002,
912
+ "loss": 0.5773,
913
+ "step": 645
914
+ },
915
+ {
916
+ "epoch": 4.4852686308492205,
917
+ "grad_norm": 1.8258005380630493,
918
+ "learning_rate": 0.0002,
919
+ "loss": 0.7495,
920
+ "step": 650
921
+ },
922
+ {
923
+ "epoch": 4.519930675909879,
924
+ "grad_norm": 0.8468143343925476,
925
+ "learning_rate": 0.0002,
926
+ "loss": 0.5441,
927
+ "step": 655
928
+ },
929
+ {
930
+ "epoch": 4.554592720970537,
931
+ "grad_norm": 0.5467656254768372,
932
+ "learning_rate": 0.0002,
933
+ "loss": 0.2906,
934
+ "step": 660
935
+ },
936
+ {
937
+ "epoch": 4.589254766031196,
938
+ "grad_norm": 0.396992564201355,
939
+ "learning_rate": 0.0002,
940
+ "loss": 0.2186,
941
+ "step": 665
942
+ },
943
+ {
944
+ "epoch": 4.6239168110918545,
945
+ "grad_norm": 0.31931889057159424,
946
+ "learning_rate": 0.0002,
947
+ "loss": 0.1629,
948
+ "step": 670
949
+ },
950
+ {
951
+ "epoch": 4.658578856152513,
952
+ "grad_norm": 1.755745530128479,
953
+ "learning_rate": 0.0002,
954
+ "loss": 0.2292,
955
+ "step": 675
956
+ },
957
+ {
958
+ "epoch": 4.693240901213172,
959
+ "grad_norm": 0.9869062900543213,
960
+ "learning_rate": 0.0002,
961
+ "loss": 0.6716,
962
+ "step": 680
963
+ },
964
+ {
965
+ "epoch": 4.72790294627383,
966
+ "grad_norm": 1.5987203121185303,
967
+ "learning_rate": 0.0002,
968
+ "loss": 0.8182,
969
+ "step": 685
970
+ },
971
+ {
972
+ "epoch": 4.7625649913344885,
973
+ "grad_norm": 0.870819091796875,
974
+ "learning_rate": 0.0002,
975
+ "loss": 0.5902,
976
+ "step": 690
977
+ },
978
+ {
979
+ "epoch": 4.797227036395148,
980
+ "grad_norm": 0.5098839402198792,
981
+ "learning_rate": 0.0002,
982
+ "loss": 0.3224,
983
+ "step": 695
984
+ },
985
+ {
986
+ "epoch": 4.831889081455806,
987
+ "grad_norm": 0.5435961484909058,
988
+ "learning_rate": 0.0002,
989
+ "loss": 0.2182,
990
+ "step": 700
991
+ },
992
+ {
993
+ "epoch": 4.866551126516464,
994
+ "grad_norm": 0.33275553584098816,
995
+ "learning_rate": 0.0002,
996
+ "loss": 0.1595,
997
+ "step": 705
998
+ },
999
+ {
1000
+ "epoch": 4.9012131715771226,
1001
+ "grad_norm": 1.8109265565872192,
1002
+ "learning_rate": 0.0002,
1003
+ "loss": 0.1985,
1004
+ "step": 710
1005
+ },
1006
+ {
1007
+ "epoch": 4.935875216637782,
1008
+ "grad_norm": 1.149431824684143,
1009
+ "learning_rate": 0.0002,
1010
+ "loss": 0.8148,
1011
+ "step": 715
1012
+ },
1013
+ {
1014
+ "epoch": 4.97053726169844,
1015
+ "grad_norm": 1.4355350732803345,
1016
+ "learning_rate": 0.0002,
1017
+ "loss": 0.6675,
1018
+ "step": 720
1019
+ },
1020
+ {
1021
+ "epoch": 5.0,
1022
+ "grad_norm": 2.76149845123291,
1023
+ "learning_rate": 0.0002,
1024
+ "loss": 0.5541,
1025
+ "step": 725
1026
+ },
1027
+ {
1028
+ "epoch": 5.034662045060658,
1029
+ "grad_norm": 0.6026546359062195,
1030
+ "learning_rate": 0.0002,
1031
+ "loss": 0.3515,
1032
+ "step": 730
1033
+ },
1034
+ {
1035
+ "epoch": 5.0693240901213175,
1036
+ "grad_norm": 0.37150222063064575,
1037
+ "learning_rate": 0.0002,
1038
+ "loss": 0.1661,
1039
+ "step": 735
1040
+ },
1041
+ {
1042
+ "epoch": 5.103986135181976,
1043
+ "grad_norm": 0.31225013732910156,
1044
+ "learning_rate": 0.0002,
1045
+ "loss": 0.1243,
1046
+ "step": 740
1047
+ },
1048
+ {
1049
+ "epoch": 5.138648180242634,
1050
+ "grad_norm": 0.4382600784301758,
1051
+ "learning_rate": 0.0002,
1052
+ "loss": 0.1004,
1053
+ "step": 745
1054
+ },
1055
+ {
1056
+ "epoch": 5.173310225303293,
1057
+ "grad_norm": 2.0306389331817627,
1058
+ "learning_rate": 0.0002,
1059
+ "loss": 0.3743,
1060
+ "step": 750
1061
+ },
1062
+ {
1063
+ "epoch": 5.2079722703639515,
1064
+ "grad_norm": 1.6935468912124634,
1065
+ "learning_rate": 0.0002,
1066
+ "loss": 0.4202,
1067
+ "step": 755
1068
+ },
1069
+ {
1070
+ "epoch": 5.24263431542461,
1071
+ "grad_norm": 1.4990637302398682,
1072
+ "learning_rate": 0.0002,
1073
+ "loss": 0.5533,
1074
+ "step": 760
1075
+ },
1076
+ {
1077
+ "epoch": 5.277296360485269,
1078
+ "grad_norm": 0.6687419414520264,
1079
+ "learning_rate": 0.0002,
1080
+ "loss": 0.3429,
1081
+ "step": 765
1082
+ },
1083
+ {
1084
+ "epoch": 5.311958405545927,
1085
+ "grad_norm": 0.5400169491767883,
1086
+ "learning_rate": 0.0002,
1087
+ "loss": 0.1759,
1088
+ "step": 770
1089
+ },
1090
+ {
1091
+ "epoch": 5.3466204506065855,
1092
+ "grad_norm": 0.39679139852523804,
1093
+ "learning_rate": 0.0002,
1094
+ "loss": 0.1395,
1095
+ "step": 775
1096
+ },
1097
+ {
1098
+ "epoch": 5.381282495667245,
1099
+ "grad_norm": 0.33043885231018066,
1100
+ "learning_rate": 0.0002,
1101
+ "loss": 0.1004,
1102
+ "step": 780
1103
+ },
1104
+ {
1105
+ "epoch": 5.415944540727903,
1106
+ "grad_norm": 3.1912200450897217,
1107
+ "learning_rate": 0.0002,
1108
+ "loss": 0.305,
1109
+ "step": 785
1110
+ },
1111
+ {
1112
+ "epoch": 5.450606585788561,
1113
+ "grad_norm": 1.2743686437606812,
1114
+ "learning_rate": 0.0002,
1115
+ "loss": 0.4876,
1116
+ "step": 790
1117
+ },
1118
+ {
1119
+ "epoch": 5.4852686308492205,
1120
+ "grad_norm": 2.9798948764801025,
1121
+ "learning_rate": 0.0002,
1122
+ "loss": 0.7476,
1123
+ "step": 795
1124
+ },
1125
+ {
1126
+ "epoch": 5.519930675909879,
1127
+ "grad_norm": 0.7342365384101868,
1128
+ "learning_rate": 0.0002,
1129
+ "loss": 0.463,
1130
+ "step": 800
1131
+ },
1132
+ {
1133
+ "epoch": 5.554592720970537,
1134
+ "grad_norm": 0.5035507678985596,
1135
+ "learning_rate": 0.0002,
1136
+ "loss": 0.2116,
1137
+ "step": 805
1138
+ },
1139
+ {
1140
+ "epoch": 5.589254766031196,
1141
+ "grad_norm": 0.4394471347332001,
1142
+ "learning_rate": 0.0002,
1143
+ "loss": 0.1568,
1144
+ "step": 810
1145
+ },
1146
+ {
1147
+ "epoch": 5.6239168110918545,
1148
+ "grad_norm": 0.383515328168869,
1149
+ "learning_rate": 0.0002,
1150
+ "loss": 0.1035,
1151
+ "step": 815
1152
+ },
1153
+ {
1154
+ "epoch": 5.658578856152513,
1155
+ "grad_norm": 2.142784357070923,
1156
+ "learning_rate": 0.0002,
1157
+ "loss": 0.3458,
1158
+ "step": 820
1159
+ },
1160
+ {
1161
+ "epoch": 5.693240901213172,
1162
+ "grad_norm": 1.2484018802642822,
1163
+ "learning_rate": 0.0002,
1164
+ "loss": 0.3576,
1165
+ "step": 825
1166
+ },
1167
+ {
1168
+ "epoch": 5.72790294627383,
1169
+ "grad_norm": 2.6863198280334473,
1170
+ "learning_rate": 0.0002,
1171
+ "loss": 0.5996,
1172
+ "step": 830
1173
+ },
1174
+ {
1175
+ "epoch": 5.7625649913344885,
1176
+ "grad_norm": 1.098381757736206,
1177
+ "learning_rate": 0.0002,
1178
+ "loss": 0.4993,
1179
+ "step": 835
1180
+ },
1181
+ {
1182
+ "epoch": 5.797227036395148,
1183
+ "grad_norm": 0.5609210133552551,
1184
+ "learning_rate": 0.0002,
1185
+ "loss": 0.2608,
1186
+ "step": 840
1187
+ },
1188
+ {
1189
+ "epoch": 5.831889081455806,
1190
+ "grad_norm": 0.5123816132545471,
1191
+ "learning_rate": 0.0002,
1192
+ "loss": 0.1799,
1193
+ "step": 845
1194
+ },
1195
+ {
1196
+ "epoch": 5.866551126516464,
1197
+ "grad_norm": 0.46399134397506714,
1198
+ "learning_rate": 0.0002,
1199
+ "loss": 0.1254,
1200
+ "step": 850
1201
+ },
1202
+ {
1203
+ "epoch": 5.9012131715771226,
1204
+ "grad_norm": 0.5089249014854431,
1205
+ "learning_rate": 0.0002,
1206
+ "loss": 0.0934,
1207
+ "step": 855
1208
+ },
1209
+ {
1210
+ "epoch": 5.935875216637782,
1211
+ "grad_norm": 1.3031930923461914,
1212
+ "learning_rate": 0.0002,
1213
+ "loss": 0.6664,
1214
+ "step": 860
1215
+ },
1216
+ {
1217
+ "epoch": 5.97053726169844,
1218
+ "grad_norm": 2.294696569442749,
1219
+ "learning_rate": 0.0002,
1220
+ "loss": 0.6034,
1221
+ "step": 865
1222
+ },
1223
+ {
1224
+ "epoch": 6.0,
1225
+ "grad_norm": 2.738062620162964,
1226
+ "learning_rate": 0.0002,
1227
+ "loss": 0.587,
1228
+ "step": 870
1229
+ },
1230
+ {
1231
+ "epoch": 6.034662045060658,
1232
+ "grad_norm": 0.6086808443069458,
1233
+ "learning_rate": 0.0002,
1234
+ "loss": 0.252,
1235
+ "step": 875
1236
+ },
1237
+ {
1238
+ "epoch": 6.0693240901213175,
1239
+ "grad_norm": 0.4935630261898041,
1240
+ "learning_rate": 0.0002,
1241
+ "loss": 0.1223,
1242
+ "step": 880
1243
+ },
1244
+ {
1245
+ "epoch": 6.103986135181976,
1246
+ "grad_norm": 0.43656599521636963,
1247
+ "learning_rate": 0.0002,
1248
+ "loss": 0.0882,
1249
+ "step": 885
1250
+ },
1251
+ {
1252
+ "epoch": 6.138648180242634,
1253
+ "grad_norm": 0.2987945079803467,
1254
+ "learning_rate": 0.0002,
1255
+ "loss": 0.0629,
1256
+ "step": 890
1257
+ },
1258
+ {
1259
+ "epoch": 6.173310225303293,
1260
+ "grad_norm": 1.7174897193908691,
1261
+ "learning_rate": 0.0002,
1262
+ "loss": 0.4102,
1263
+ "step": 895
1264
+ },
1265
+ {
1266
+ "epoch": 6.2079722703639515,
1267
+ "grad_norm": 2.4946401119232178,
1268
+ "learning_rate": 0.0002,
1269
+ "loss": 0.2899,
1270
+ "step": 900
1271
+ },
1272
+ {
1273
+ "epoch": 6.24263431542461,
1274
+ "grad_norm": 2.8931374549865723,
1275
+ "learning_rate": 0.0002,
1276
+ "loss": 0.4676,
1277
+ "step": 905
1278
+ },
1279
+ {
1280
+ "epoch": 6.277296360485269,
1281
+ "grad_norm": 0.8096083998680115,
1282
+ "learning_rate": 0.0002,
1283
+ "loss": 0.3168,
1284
+ "step": 910
1285
+ },
1286
+ {
1287
+ "epoch": 6.311958405545927,
1288
+ "grad_norm": 0.4966631531715393,
1289
+ "learning_rate": 0.0002,
1290
+ "loss": 0.1399,
1291
+ "step": 915
1292
+ },
1293
+ {
1294
+ "epoch": 6.3466204506065855,
1295
+ "grad_norm": 0.46740466356277466,
1296
+ "learning_rate": 0.0002,
1297
+ "loss": 0.1037,
1298
+ "step": 920
1299
+ },
1300
+ {
1301
+ "epoch": 6.381282495667245,
1302
+ "grad_norm": 0.3550221920013428,
1303
+ "learning_rate": 0.0002,
1304
+ "loss": 0.0682,
1305
+ "step": 925
1306
+ },
1307
+ {
1308
+ "epoch": 6.415944540727903,
1309
+ "grad_norm": 1.7010166645050049,
1310
+ "learning_rate": 0.0002,
1311
+ "loss": 0.401,
1312
+ "step": 930
1313
+ },
1314
+ {
1315
+ "epoch": 6.450606585788561,
1316
+ "grad_norm": 1.4712696075439453,
1317
+ "learning_rate": 0.0002,
1318
+ "loss": 0.2843,
1319
+ "step": 935
1320
+ },
1321
+ {
1322
+ "epoch": 6.4852686308492205,
1323
+ "grad_norm": 1.702062964439392,
1324
+ "learning_rate": 0.0002,
1325
+ "loss": 0.5166,
1326
+ "step": 940
1327
+ },
1328
+ {
1329
+ "epoch": 6.519930675909879,
1330
+ "grad_norm": 0.6730090379714966,
1331
+ "learning_rate": 0.0002,
1332
+ "loss": 0.3467,
1333
+ "step": 945
1334
+ },
1335
+ {
1336
+ "epoch": 6.554592720970537,
1337
+ "grad_norm": 0.6367856860160828,
1338
+ "learning_rate": 0.0002,
1339
+ "loss": 0.1564,
1340
+ "step": 950
1341
+ },
1342
+ {
1343
+ "epoch": 6.589254766031196,
1344
+ "grad_norm": 0.5671469569206238,
1345
+ "learning_rate": 0.0002,
1346
+ "loss": 0.1267,
1347
+ "step": 955
1348
+ },
1349
+ {
1350
+ "epoch": 6.6239168110918545,
1351
+ "grad_norm": 0.29594796895980835,
1352
+ "learning_rate": 0.0002,
1353
+ "loss": 0.0927,
1354
+ "step": 960
1355
+ },
1356
+ {
1357
+ "epoch": 6.658578856152513,
1358
+ "grad_norm": 0.6945505738258362,
1359
+ "learning_rate": 0.0002,
1360
+ "loss": 0.0982,
1361
+ "step": 965
1362
+ },
1363
+ {
1364
+ "epoch": 6.693240901213172,
1365
+ "grad_norm": 1.2007991075515747,
1366
+ "learning_rate": 0.0002,
1367
+ "loss": 0.4829,
1368
+ "step": 970
1369
+ },
1370
+ {
1371
+ "epoch": 6.72790294627383,
1372
+ "grad_norm": 4.258643627166748,
1373
+ "learning_rate": 0.0002,
1374
+ "loss": 0.5014,
1375
+ "step": 975
1376
+ },
1377
+ {
1378
+ "epoch": 6.7625649913344885,
1379
+ "grad_norm": 1.2368519306182861,
1380
+ "learning_rate": 0.0002,
1381
+ "loss": 0.4639,
1382
+ "step": 980
1383
+ },
1384
+ {
1385
+ "epoch": 6.797227036395148,
1386
+ "grad_norm": 0.5854914784431458,
1387
+ "learning_rate": 0.0002,
1388
+ "loss": 0.1885,
1389
+ "step": 985
1390
+ },
1391
+ {
1392
+ "epoch": 6.831889081455806,
1393
+ "grad_norm": 0.433727890253067,
1394
+ "learning_rate": 0.0002,
1395
+ "loss": 0.1182,
1396
+ "step": 990
1397
+ },
1398
+ {
1399
+ "epoch": 6.866551126516464,
1400
+ "grad_norm": 0.37968766689300537,
1401
+ "learning_rate": 0.0002,
1402
+ "loss": 0.0907,
1403
+ "step": 995
1404
+ },
1405
+ {
1406
+ "epoch": 6.9012131715771226,
1407
+ "grad_norm": 0.49255871772766113,
1408
+ "learning_rate": 0.0002,
1409
+ "loss": 0.0748,
1410
+ "step": 1000
1411
+ },
1412
+ {
1413
+ "epoch": 6.935875216637782,
1414
+ "grad_norm": 0.8562117218971252,
1415
+ "learning_rate": 0.0002,
1416
+ "loss": 0.301,
1417
+ "step": 1005
1418
+ },
1419
+ {
1420
+ "epoch": 6.97053726169844,
1421
+ "grad_norm": 2.18452787399292,
1422
+ "learning_rate": 0.0002,
1423
+ "loss": 0.5265,
1424
+ "step": 1010
1425
+ },
1426
+ {
1427
+ "epoch": 7.0,
1428
+ "grad_norm": 5.248262405395508,
1429
+ "learning_rate": 0.0002,
1430
+ "loss": 0.4677,
1431
+ "step": 1015
1432
+ },
1433
+ {
1434
+ "epoch": 7.034662045060658,
1435
+ "grad_norm": 0.6046018600463867,
1436
+ "learning_rate": 0.0002,
1437
+ "loss": 0.1937,
1438
+ "step": 1020
1439
+ },
1440
+ {
1441
+ "epoch": 7.0693240901213175,
1442
+ "grad_norm": 0.4035234749317169,
1443
+ "learning_rate": 0.0002,
1444
+ "loss": 0.0889,
1445
+ "step": 1025
1446
+ },
1447
+ {
1448
+ "epoch": 7.103986135181976,
1449
+ "grad_norm": 0.41130027174949646,
1450
+ "learning_rate": 0.0002,
1451
+ "loss": 0.0768,
1452
+ "step": 1030
1453
+ },
1454
+ {
1455
+ "epoch": 7.138648180242634,
1456
+ "grad_norm": 0.43616095185279846,
1457
+ "learning_rate": 0.0002,
1458
+ "loss": 0.062,
1459
+ "step": 1035
1460
+ },
1461
+ {
1462
+ "epoch": 7.173310225303293,
1463
+ "grad_norm": 1.4820456504821777,
1464
+ "learning_rate": 0.0002,
1465
+ "loss": 0.2592,
1466
+ "step": 1040
1467
+ },
1468
+ {
1469
+ "epoch": 7.2079722703639515,
1470
+ "grad_norm": 2.2512240409851074,
1471
+ "learning_rate": 0.0002,
1472
+ "loss": 0.2771,
1473
+ "step": 1045
1474
+ },
1475
+ {
1476
+ "epoch": 7.24263431542461,
1477
+ "grad_norm": 1.473806619644165,
1478
+ "learning_rate": 0.0002,
1479
+ "loss": 0.3877,
1480
+ "step": 1050
1481
+ },
1482
+ {
1483
+ "epoch": 7.277296360485269,
1484
+ "grad_norm": 0.7703912258148193,
1485
+ "learning_rate": 0.0002,
1486
+ "loss": 0.2664,
1487
+ "step": 1055
1488
+ },
1489
+ {
1490
+ "epoch": 7.311958405545927,
1491
+ "grad_norm": 0.5043675303459167,
1492
+ "learning_rate": 0.0002,
1493
+ "loss": 0.1109,
1494
+ "step": 1060
1495
+ },
1496
+ {
1497
+ "epoch": 7.3466204506065855,
1498
+ "grad_norm": 0.43726152181625366,
1499
+ "learning_rate": 0.0002,
1500
+ "loss": 0.0839,
1501
+ "step": 1065
1502
+ },
1503
+ {
1504
+ "epoch": 7.381282495667245,
1505
+ "grad_norm": 0.4088805615901947,
1506
+ "learning_rate": 0.0002,
1507
+ "loss": 0.0627,
1508
+ "step": 1070
1509
+ },
1510
+ {
1511
+ "epoch": 7.415944540727903,
1512
+ "grad_norm": 2.5372557640075684,
1513
+ "learning_rate": 0.0002,
1514
+ "loss": 0.1959,
1515
+ "step": 1075
1516
+ },
1517
+ {
1518
+ "epoch": 7.450606585788561,
1519
+ "grad_norm": 2.1121976375579834,
1520
+ "learning_rate": 0.0002,
1521
+ "loss": 0.3118,
1522
+ "step": 1080
1523
+ },
1524
+ {
1525
+ "epoch": 7.4852686308492205,
1526
+ "grad_norm": 2.125603199005127,
1527
+ "learning_rate": 0.0002,
1528
+ "loss": 0.565,
1529
+ "step": 1085
1530
+ },
1531
+ {
1532
+ "epoch": 7.519930675909879,
1533
+ "grad_norm": 0.8563218116760254,
1534
+ "learning_rate": 0.0002,
1535
+ "loss": 0.4099,
1536
+ "step": 1090
1537
+ },
1538
+ {
1539
+ "epoch": 7.554592720970537,
1540
+ "grad_norm": 0.4825403392314911,
1541
+ "learning_rate": 0.0002,
1542
+ "loss": 0.1419,
1543
+ "step": 1095
1544
+ },
1545
+ {
1546
+ "epoch": 7.589254766031196,
1547
+ "grad_norm": 0.4735303521156311,
1548
+ "learning_rate": 0.0002,
1549
+ "loss": 0.09,
1550
+ "step": 1100
1551
+ },
1552
+ {
1553
+ "epoch": 7.6239168110918545,
1554
+ "grad_norm": 0.24926654994487762,
1555
+ "learning_rate": 0.0002,
1556
+ "loss": 0.0699,
1557
+ "step": 1105
1558
+ },
1559
+ {
1560
+ "epoch": 7.658578856152513,
1561
+ "grad_norm": 0.2843971252441406,
1562
+ "learning_rate": 0.0002,
1563
+ "loss": 0.0602,
1564
+ "step": 1110
1565
+ },
1566
+ {
1567
+ "epoch": 7.693240901213172,
1568
+ "grad_norm": 0.9436930418014526,
1569
+ "learning_rate": 0.0002,
1570
+ "loss": 0.3591,
1571
+ "step": 1115
1572
+ },
1573
+ {
1574
+ "epoch": 7.72790294627383,
1575
+ "grad_norm": 1.8918225765228271,
1576
+ "learning_rate": 0.0002,
1577
+ "loss": 0.4049,
1578
+ "step": 1120
1579
+ },
1580
+ {
1581
+ "epoch": 7.7625649913344885,
1582
+ "grad_norm": 1.1229664087295532,
1583
+ "learning_rate": 0.0002,
1584
+ "loss": 0.4094,
1585
+ "step": 1125
1586
+ },
1587
+ {
1588
+ "epoch": 7.797227036395148,
1589
+ "grad_norm": 0.6665800213813782,
1590
+ "learning_rate": 0.0002,
1591
+ "loss": 0.1265,
1592
+ "step": 1130
1593
+ },
1594
+ {
1595
+ "epoch": 7.831889081455806,
1596
+ "grad_norm": 0.38160014152526855,
1597
+ "learning_rate": 0.0002,
1598
+ "loss": 0.0895,
1599
+ "step": 1135
1600
+ },
1601
+ {
1602
+ "epoch": 7.866551126516464,
1603
+ "grad_norm": 0.5825662612915039,
1604
+ "learning_rate": 0.0002,
1605
+ "loss": 0.0637,
1606
+ "step": 1140
1607
+ },
1608
+ {
1609
+ "epoch": 7.9012131715771226,
1610
+ "grad_norm": 2.218074321746826,
1611
+ "learning_rate": 0.0002,
1612
+ "loss": 0.22,
1613
+ "step": 1145
1614
+ },
1615
+ {
1616
+ "epoch": 7.935875216637782,
1617
+ "grad_norm": 1.0831362009048462,
1618
+ "learning_rate": 0.0002,
1619
+ "loss": 0.3117,
1620
+ "step": 1150
1621
+ },
1622
+ {
1623
+ "epoch": 7.97053726169844,
1624
+ "grad_norm": 1.6957491636276245,
1625
+ "learning_rate": 0.0002,
1626
+ "loss": 0.3566,
1627
+ "step": 1155
1628
+ },
1629
+ {
1630
+ "epoch": 8.0,
1631
+ "grad_norm": 6.261979103088379,
1632
+ "learning_rate": 0.0002,
1633
+ "loss": 0.4143,
1634
+ "step": 1160
1635
+ }
1636
+ ],
1637
+ "logging_steps": 5,
1638
+ "max_steps": 1440,
1639
+ "num_input_tokens_seen": 0,
1640
+ "num_train_epochs": 10,
1641
+ "save_steps": 500,
1642
+ "stateful_callbacks": {
1643
+ "TrainerControl": {
1644
+ "args": {
1645
+ "should_epoch_stop": false,
1646
+ "should_evaluate": false,
1647
+ "should_log": false,
1648
+ "should_save": true,
1649
+ "should_training_stop": false
1650
+ },
1651
+ "attributes": {}
1652
+ }
1653
+ },
1654
+ "total_flos": 2.705287300557005e+16,
1655
+ "train_batch_size": 2,
1656
+ "trial_name": null,
1657
+ "trial_params": null
1658
+ }
checkpoint-1160/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:809a1a5c9369a216b8a4d6e1c008ebfd2034bae620a7456bafd493b02b881a58
3
+ size 5624
checkpoint-1160/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1296/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/Phi-4-mini-instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.2
checkpoint-1296/adapter_config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "microsoft/Phi-4-mini-instruct",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 32,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.05,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "r": 16,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": [
27
+ "up_proj",
28
+ "k_proj",
29
+ "down_proj",
30
+ "v_proj",
31
+ "gate_proj",
32
+ "q_proj",
33
+ "o_proj"
34
+ ],
35
+ "task_type": "CAUSAL_LM",
36
+ "trainable_token_indices": null,
37
+ "use_dora": false,
38
+ "use_rslora": false
39
+ }
checkpoint-1296/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cce141f122b838f99ad3388d6423141fed7e541da19924acd35d22b943f6a3a8
3
+ size 35668592
checkpoint-1296/added_tokens.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|/tool_call|>": 200026,
3
+ "<|/tool|>": 200024,
4
+ "<|assistant|>": 200019,
5
+ "<|end|>": 200020,
6
+ "<|system|>": 200022,
7
+ "<|tag|>": 200028,
8
+ "<|tool_call|>": 200025,
9
+ "<|tool_response|>": 200027,
10
+ "<|tool|>": 200023,
11
+ "<|user|>": 200021
12
+ }
checkpoint-1296/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1296/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2fe732b7d8fd4b3625dd06412d2d8b308d3976b90d7e58b49e1d8a7bd16bb5b9
3
+ size 18586618
checkpoint-1296/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2aead8a90f9f2693e3481ad74bca9b9235f64a374a51400d02ce063512f502c2
3
+ size 14244
checkpoint-1296/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:718c89d47513626d81f89576e0c3ab350e1560231539c499bab2294e1070c3f1
3
+ size 1064
checkpoint-1296/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|endoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<|endoftext|>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
checkpoint-1296/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d7f47443257fe193e8dcb1e6912235832f416fd25161c021f77cb63163cd44e
3
+ size 15524193
checkpoint-1296/tokenizer_config.json ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": false,
5
+ "added_tokens_decoder": {
6
+ "199999": {
7
+ "content": "<|endoftext|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "200018": {
15
+ "content": "<|endofprompt|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "200019": {
23
+ "content": "<|assistant|>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": true,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "200020": {
31
+ "content": "<|end|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": true,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "200021": {
39
+ "content": "<|user|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": true,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "200022": {
47
+ "content": "<|system|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": true,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "200023": {
55
+ "content": "<|tool|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": true,
59
+ "single_word": false,
60
+ "special": false
61
+ },
62
+ "200024": {
63
+ "content": "<|/tool|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": true,
67
+ "single_word": false,
68
+ "special": false
69
+ },
70
+ "200025": {
71
+ "content": "<|tool_call|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": true,
75
+ "single_word": false,
76
+ "special": false
77
+ },
78
+ "200026": {
79
+ "content": "<|/tool_call|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": true,
83
+ "single_word": false,
84
+ "special": false
85
+ },
86
+ "200027": {
87
+ "content": "<|tool_response|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": true,
91
+ "single_word": false,
92
+ "special": false
93
+ },
94
+ "200028": {
95
+ "content": "<|tag|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": true,
99
+ "single_word": false,
100
+ "special": true
101
+ }
102
+ },
103
+ "bos_token": "<|endoftext|>",
104
+ "chat_template": "{% for message in messages %}{% if message['role'] == 'system' and 'tools' in message and message['tools'] is not none %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|tool|>' + message['tools'] + '<|/tool|>' + '<|end|>' }}{% else %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|end|>' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>' }}{% else %}{{ eos_token }}{% endif %}",
105
+ "clean_up_tokenization_spaces": false,
106
+ "eos_token": "<|endoftext|>",
107
+ "extra_special_tokens": {},
108
+ "model_max_length": 131072,
109
+ "pad_token": "<|endoftext|>",
110
+ "tokenizer_class": "GPT2Tokenizer",
111
+ "unk_token": "<|endoftext|>"
112
+ }
checkpoint-1296/trainer_state.json ADDED
@@ -0,0 +1,1847 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 8.998266897746968,
6
+ "eval_steps": 500,
7
+ "global_step": 1296,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.03466204506065858,
14
+ "grad_norm": 1.530611515045166,
15
+ "learning_rate": 0.0002,
16
+ "loss": 3.0151,
17
+ "step": 5
18
+ },
19
+ {
20
+ "epoch": 0.06932409012131716,
21
+ "grad_norm": 1.7004058361053467,
22
+ "learning_rate": 0.0002,
23
+ "loss": 2.0235,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.10398613518197573,
28
+ "grad_norm": 1.933908462524414,
29
+ "learning_rate": 0.0002,
30
+ "loss": 1.1225,
31
+ "step": 15
32
+ },
33
+ {
34
+ "epoch": 0.1386481802426343,
35
+ "grad_norm": 0.9951248168945312,
36
+ "learning_rate": 0.0002,
37
+ "loss": 0.5422,
38
+ "step": 20
39
+ },
40
+ {
41
+ "epoch": 0.1733102253032929,
42
+ "grad_norm": 6.152623176574707,
43
+ "learning_rate": 0.0002,
44
+ "loss": 1.5639,
45
+ "step": 25
46
+ },
47
+ {
48
+ "epoch": 0.20797227036395147,
49
+ "grad_norm": 8.008278846740723,
50
+ "learning_rate": 0.0002,
51
+ "loss": 2.6486,
52
+ "step": 30
53
+ },
54
+ {
55
+ "epoch": 0.24263431542461006,
56
+ "grad_norm": 4.960943222045898,
57
+ "learning_rate": 0.0002,
58
+ "loss": 2.6059,
59
+ "step": 35
60
+ },
61
+ {
62
+ "epoch": 0.2772963604852686,
63
+ "grad_norm": 4.607645511627197,
64
+ "learning_rate": 0.0002,
65
+ "loss": 1.6898,
66
+ "step": 40
67
+ },
68
+ {
69
+ "epoch": 0.3119584055459272,
70
+ "grad_norm": 0.8448249101638794,
71
+ "learning_rate": 0.0002,
72
+ "loss": 0.799,
73
+ "step": 45
74
+ },
75
+ {
76
+ "epoch": 0.3466204506065858,
77
+ "grad_norm": 0.46238261461257935,
78
+ "learning_rate": 0.0002,
79
+ "loss": 0.5374,
80
+ "step": 50
81
+ },
82
+ {
83
+ "epoch": 0.38128249566724437,
84
+ "grad_norm": 0.3575257956981659,
85
+ "learning_rate": 0.0002,
86
+ "loss": 0.4247,
87
+ "step": 55
88
+ },
89
+ {
90
+ "epoch": 0.41594454072790293,
91
+ "grad_norm": 2.5151493549346924,
92
+ "learning_rate": 0.0002,
93
+ "loss": 0.7472,
94
+ "step": 60
95
+ },
96
+ {
97
+ "epoch": 0.4506065857885615,
98
+ "grad_norm": 17.38052749633789,
99
+ "learning_rate": 0.0002,
100
+ "loss": 1.8466,
101
+ "step": 65
102
+ },
103
+ {
104
+ "epoch": 0.4852686308492201,
105
+ "grad_norm": 15.523968696594238,
106
+ "learning_rate": 0.0002,
107
+ "loss": 2.1105,
108
+ "step": 70
109
+ },
110
+ {
111
+ "epoch": 0.5199306759098787,
112
+ "grad_norm": 1.0907574892044067,
113
+ "learning_rate": 0.0002,
114
+ "loss": 1.1052,
115
+ "step": 75
116
+ },
117
+ {
118
+ "epoch": 0.5545927209705372,
119
+ "grad_norm": 0.5225581526756287,
120
+ "learning_rate": 0.0002,
121
+ "loss": 0.5663,
122
+ "step": 80
123
+ },
124
+ {
125
+ "epoch": 0.5892547660311959,
126
+ "grad_norm": 0.3306778073310852,
127
+ "learning_rate": 0.0002,
128
+ "loss": 0.4648,
129
+ "step": 85
130
+ },
131
+ {
132
+ "epoch": 0.6239168110918544,
133
+ "grad_norm": 0.33595138788223267,
134
+ "learning_rate": 0.0002,
135
+ "loss": 0.3762,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 0.658578856152513,
140
+ "grad_norm": 1.978458285331726,
141
+ "learning_rate": 0.0002,
142
+ "loss": 0.9162,
143
+ "step": 95
144
+ },
145
+ {
146
+ "epoch": 0.6932409012131716,
147
+ "grad_norm": 1.1226632595062256,
148
+ "learning_rate": 0.0002,
149
+ "loss": 1.5477,
150
+ "step": 100
151
+ },
152
+ {
153
+ "epoch": 0.7279029462738301,
154
+ "grad_norm": 22.263992309570312,
155
+ "learning_rate": 0.0002,
156
+ "loss": 1.8063,
157
+ "step": 105
158
+ },
159
+ {
160
+ "epoch": 0.7625649913344887,
161
+ "grad_norm": 1.3690563440322876,
162
+ "learning_rate": 0.0002,
163
+ "loss": 1.3102,
164
+ "step": 110
165
+ },
166
+ {
167
+ "epoch": 0.7972270363951474,
168
+ "grad_norm": 0.5651267766952515,
169
+ "learning_rate": 0.0002,
170
+ "loss": 0.553,
171
+ "step": 115
172
+ },
173
+ {
174
+ "epoch": 0.8318890814558059,
175
+ "grad_norm": 0.3272489011287689,
176
+ "learning_rate": 0.0002,
177
+ "loss": 0.4813,
178
+ "step": 120
179
+ },
180
+ {
181
+ "epoch": 0.8665511265164645,
182
+ "grad_norm": 0.30475500226020813,
183
+ "learning_rate": 0.0002,
184
+ "loss": 0.3746,
185
+ "step": 125
186
+ },
187
+ {
188
+ "epoch": 0.901213171577123,
189
+ "grad_norm": 0.2812097370624542,
190
+ "learning_rate": 0.0002,
191
+ "loss": 0.284,
192
+ "step": 130
193
+ },
194
+ {
195
+ "epoch": 0.9358752166377816,
196
+ "grad_norm": 1.159839391708374,
197
+ "learning_rate": 0.0002,
198
+ "loss": 1.5179,
199
+ "step": 135
200
+ },
201
+ {
202
+ "epoch": 0.9705372616984402,
203
+ "grad_norm": 4.740174770355225,
204
+ "learning_rate": 0.0002,
205
+ "loss": 1.549,
206
+ "step": 140
207
+ },
208
+ {
209
+ "epoch": 1.0,
210
+ "grad_norm": 2.613008499145508,
211
+ "learning_rate": 0.0002,
212
+ "loss": 1.3938,
213
+ "step": 145
214
+ },
215
+ {
216
+ "epoch": 1.0346620450606585,
217
+ "grad_norm": 0.31811827421188354,
218
+ "learning_rate": 0.0002,
219
+ "loss": 0.5353,
220
+ "step": 150
221
+ },
222
+ {
223
+ "epoch": 1.0693240901213172,
224
+ "grad_norm": 0.42897579073905945,
225
+ "learning_rate": 0.0002,
226
+ "loss": 0.4452,
227
+ "step": 155
228
+ },
229
+ {
230
+ "epoch": 1.1039861351819757,
231
+ "grad_norm": 0.28854838013648987,
232
+ "learning_rate": 0.0002,
233
+ "loss": 0.3563,
234
+ "step": 160
235
+ },
236
+ {
237
+ "epoch": 1.1386481802426343,
238
+ "grad_norm": 0.32319992780685425,
239
+ "learning_rate": 0.0002,
240
+ "loss": 0.2697,
241
+ "step": 165
242
+ },
243
+ {
244
+ "epoch": 1.173310225303293,
245
+ "grad_norm": 1.0144641399383545,
246
+ "learning_rate": 0.0002,
247
+ "loss": 1.3199,
248
+ "step": 170
249
+ },
250
+ {
251
+ "epoch": 1.2079722703639515,
252
+ "grad_norm": 2.1387648582458496,
253
+ "learning_rate": 0.0002,
254
+ "loss": 1.1948,
255
+ "step": 175
256
+ },
257
+ {
258
+ "epoch": 1.24263431542461,
259
+ "grad_norm": 5.240429401397705,
260
+ "learning_rate": 0.0002,
261
+ "loss": 1.2138,
262
+ "step": 180
263
+ },
264
+ {
265
+ "epoch": 1.2772963604852685,
266
+ "grad_norm": 0.5809195637702942,
267
+ "learning_rate": 0.0002,
268
+ "loss": 0.7417,
269
+ "step": 185
270
+ },
271
+ {
272
+ "epoch": 1.3119584055459272,
273
+ "grad_norm": 0.3426031768321991,
274
+ "learning_rate": 0.0002,
275
+ "loss": 0.4541,
276
+ "step": 190
277
+ },
278
+ {
279
+ "epoch": 1.3466204506065858,
280
+ "grad_norm": 0.34089571237564087,
281
+ "learning_rate": 0.0002,
282
+ "loss": 0.3709,
283
+ "step": 195
284
+ },
285
+ {
286
+ "epoch": 1.3812824956672443,
287
+ "grad_norm": 0.2676282823085785,
288
+ "learning_rate": 0.0002,
289
+ "loss": 0.2981,
290
+ "step": 200
291
+ },
292
+ {
293
+ "epoch": 1.415944540727903,
294
+ "grad_norm": 1.8662705421447754,
295
+ "learning_rate": 0.0002,
296
+ "loss": 0.8353,
297
+ "step": 205
298
+ },
299
+ {
300
+ "epoch": 1.4506065857885615,
301
+ "grad_norm": 3.2310688495635986,
302
+ "learning_rate": 0.0002,
303
+ "loss": 1.2188,
304
+ "step": 210
305
+ },
306
+ {
307
+ "epoch": 1.48526863084922,
308
+ "grad_norm": 2.255415916442871,
309
+ "learning_rate": 0.0002,
310
+ "loss": 1.1677,
311
+ "step": 215
312
+ },
313
+ {
314
+ "epoch": 1.5199306759098787,
315
+ "grad_norm": 0.5544691681861877,
316
+ "learning_rate": 0.0002,
317
+ "loss": 0.799,
318
+ "step": 220
319
+ },
320
+ {
321
+ "epoch": 1.5545927209705372,
322
+ "grad_norm": 0.4003375172615051,
323
+ "learning_rate": 0.0002,
324
+ "loss": 0.4786,
325
+ "step": 225
326
+ },
327
+ {
328
+ "epoch": 1.5892547660311958,
329
+ "grad_norm": 0.3774619698524475,
330
+ "learning_rate": 0.0002,
331
+ "loss": 0.4233,
332
+ "step": 230
333
+ },
334
+ {
335
+ "epoch": 1.6239168110918545,
336
+ "grad_norm": 0.352490097284317,
337
+ "learning_rate": 0.0002,
338
+ "loss": 0.3332,
339
+ "step": 235
340
+ },
341
+ {
342
+ "epoch": 1.658578856152513,
343
+ "grad_norm": 0.2637154459953308,
344
+ "learning_rate": 0.0002,
345
+ "loss": 0.2438,
346
+ "step": 240
347
+ },
348
+ {
349
+ "epoch": 1.6932409012131715,
350
+ "grad_norm": 1.3437107801437378,
351
+ "learning_rate": 0.0002,
352
+ "loss": 1.4351,
353
+ "step": 245
354
+ },
355
+ {
356
+ "epoch": 1.7279029462738302,
357
+ "grad_norm": 2.647561550140381,
358
+ "learning_rate": 0.0002,
359
+ "loss": 1.0698,
360
+ "step": 250
361
+ },
362
+ {
363
+ "epoch": 1.7625649913344887,
364
+ "grad_norm": 0.6839751601219177,
365
+ "learning_rate": 0.0002,
366
+ "loss": 0.7411,
367
+ "step": 255
368
+ },
369
+ {
370
+ "epoch": 1.7972270363951472,
371
+ "grad_norm": 0.4790812134742737,
372
+ "learning_rate": 0.0002,
373
+ "loss": 0.5009,
374
+ "step": 260
375
+ },
376
+ {
377
+ "epoch": 1.831889081455806,
378
+ "grad_norm": 0.36322328448295593,
379
+ "learning_rate": 0.0002,
380
+ "loss": 0.4014,
381
+ "step": 265
382
+ },
383
+ {
384
+ "epoch": 1.8665511265164645,
385
+ "grad_norm": 0.31694507598876953,
386
+ "learning_rate": 0.0002,
387
+ "loss": 0.3441,
388
+ "step": 270
389
+ },
390
+ {
391
+ "epoch": 1.901213171577123,
392
+ "grad_norm": 0.24292677640914917,
393
+ "learning_rate": 0.0002,
394
+ "loss": 0.2619,
395
+ "step": 275
396
+ },
397
+ {
398
+ "epoch": 1.9358752166377817,
399
+ "grad_norm": 1.133062720298767,
400
+ "learning_rate": 0.0002,
401
+ "loss": 1.1564,
402
+ "step": 280
403
+ },
404
+ {
405
+ "epoch": 1.9705372616984402,
406
+ "grad_norm": 10.754274368286133,
407
+ "learning_rate": 0.0002,
408
+ "loss": 1.436,
409
+ "step": 285
410
+ },
411
+ {
412
+ "epoch": 2.0,
413
+ "grad_norm": 1.6346553564071655,
414
+ "learning_rate": 0.0002,
415
+ "loss": 1.3215,
416
+ "step": 290
417
+ },
418
+ {
419
+ "epoch": 2.0346620450606587,
420
+ "grad_norm": 0.7156389355659485,
421
+ "learning_rate": 0.0002,
422
+ "loss": 0.551,
423
+ "step": 295
424
+ },
425
+ {
426
+ "epoch": 2.069324090121317,
427
+ "grad_norm": 0.3842258155345917,
428
+ "learning_rate": 0.0002,
429
+ "loss": 0.3783,
430
+ "step": 300
431
+ },
432
+ {
433
+ "epoch": 2.1039861351819757,
434
+ "grad_norm": 0.35967278480529785,
435
+ "learning_rate": 0.0002,
436
+ "loss": 0.3124,
437
+ "step": 305
438
+ },
439
+ {
440
+ "epoch": 2.1386481802426345,
441
+ "grad_norm": 0.296977162361145,
442
+ "learning_rate": 0.0002,
443
+ "loss": 0.2367,
444
+ "step": 310
445
+ },
446
+ {
447
+ "epoch": 2.1733102253032928,
448
+ "grad_norm": 1.6834601163864136,
449
+ "learning_rate": 0.0002,
450
+ "loss": 0.7685,
451
+ "step": 315
452
+ },
453
+ {
454
+ "epoch": 2.2079722703639515,
455
+ "grad_norm": 5.758884906768799,
456
+ "learning_rate": 0.0002,
457
+ "loss": 1.0063,
458
+ "step": 320
459
+ },
460
+ {
461
+ "epoch": 2.2426343154246102,
462
+ "grad_norm": 15.24948501586914,
463
+ "learning_rate": 0.0002,
464
+ "loss": 1.231,
465
+ "step": 325
466
+ },
467
+ {
468
+ "epoch": 2.2772963604852685,
469
+ "grad_norm": 0.599730372428894,
470
+ "learning_rate": 0.0002,
471
+ "loss": 0.6392,
472
+ "step": 330
473
+ },
474
+ {
475
+ "epoch": 2.3119584055459272,
476
+ "grad_norm": 0.5307044982910156,
477
+ "learning_rate": 0.0002,
478
+ "loss": 0.3804,
479
+ "step": 335
480
+ },
481
+ {
482
+ "epoch": 2.346620450606586,
483
+ "grad_norm": 0.33558061718940735,
484
+ "learning_rate": 0.0002,
485
+ "loss": 0.3282,
486
+ "step": 340
487
+ },
488
+ {
489
+ "epoch": 2.3812824956672443,
490
+ "grad_norm": 0.2716732919216156,
491
+ "learning_rate": 0.0002,
492
+ "loss": 0.2429,
493
+ "step": 345
494
+ },
495
+ {
496
+ "epoch": 2.415944540727903,
497
+ "grad_norm": 2.454636812210083,
498
+ "learning_rate": 0.0002,
499
+ "loss": 0.5396,
500
+ "step": 350
501
+ },
502
+ {
503
+ "epoch": 2.4506065857885613,
504
+ "grad_norm": 13.286089897155762,
505
+ "learning_rate": 0.0002,
506
+ "loss": 1.0545,
507
+ "step": 355
508
+ },
509
+ {
510
+ "epoch": 2.48526863084922,
511
+ "grad_norm": 12.619502067565918,
512
+ "learning_rate": 0.0002,
513
+ "loss": 1.1547,
514
+ "step": 360
515
+ },
516
+ {
517
+ "epoch": 2.5199306759098787,
518
+ "grad_norm": 0.6347368359565735,
519
+ "learning_rate": 0.0002,
520
+ "loss": 0.7136,
521
+ "step": 365
522
+ },
523
+ {
524
+ "epoch": 2.554592720970537,
525
+ "grad_norm": 0.44485101103782654,
526
+ "learning_rate": 0.0002,
527
+ "loss": 0.3994,
528
+ "step": 370
529
+ },
530
+ {
531
+ "epoch": 2.5892547660311958,
532
+ "grad_norm": 0.36494728922843933,
533
+ "learning_rate": 0.0002,
534
+ "loss": 0.3107,
535
+ "step": 375
536
+ },
537
+ {
538
+ "epoch": 2.6239168110918545,
539
+ "grad_norm": 0.322171688079834,
540
+ "learning_rate": 0.0002,
541
+ "loss": 0.2753,
542
+ "step": 380
543
+ },
544
+ {
545
+ "epoch": 2.6585788561525128,
546
+ "grad_norm": 0.9659174084663391,
547
+ "learning_rate": 0.0002,
548
+ "loss": 0.2948,
549
+ "step": 385
550
+ },
551
+ {
552
+ "epoch": 2.6932409012131715,
553
+ "grad_norm": 0.9371129870414734,
554
+ "learning_rate": 0.0002,
555
+ "loss": 1.0286,
556
+ "step": 390
557
+ },
558
+ {
559
+ "epoch": 2.7279029462738302,
560
+ "grad_norm": 3.4619617462158203,
561
+ "learning_rate": 0.0002,
562
+ "loss": 1.0745,
563
+ "step": 395
564
+ },
565
+ {
566
+ "epoch": 2.7625649913344885,
567
+ "grad_norm": 0.6884852051734924,
568
+ "learning_rate": 0.0002,
569
+ "loss": 0.7637,
570
+ "step": 400
571
+ },
572
+ {
573
+ "epoch": 2.7972270363951472,
574
+ "grad_norm": 0.4440446197986603,
575
+ "learning_rate": 0.0002,
576
+ "loss": 0.4331,
577
+ "step": 405
578
+ },
579
+ {
580
+ "epoch": 2.831889081455806,
581
+ "grad_norm": 0.37561893463134766,
582
+ "learning_rate": 0.0002,
583
+ "loss": 0.3667,
584
+ "step": 410
585
+ },
586
+ {
587
+ "epoch": 2.8665511265164643,
588
+ "grad_norm": 0.320077121257782,
589
+ "learning_rate": 0.0002,
590
+ "loss": 0.2769,
591
+ "step": 415
592
+ },
593
+ {
594
+ "epoch": 2.901213171577123,
595
+ "grad_norm": 1.4914495944976807,
596
+ "learning_rate": 0.0002,
597
+ "loss": 0.4493,
598
+ "step": 420
599
+ },
600
+ {
601
+ "epoch": 2.9358752166377817,
602
+ "grad_norm": 1.164036750793457,
603
+ "learning_rate": 0.0002,
604
+ "loss": 1.1276,
605
+ "step": 425
606
+ },
607
+ {
608
+ "epoch": 2.97053726169844,
609
+ "grad_norm": 5.013108253479004,
610
+ "learning_rate": 0.0002,
611
+ "loss": 1.0841,
612
+ "step": 430
613
+ },
614
+ {
615
+ "epoch": 3.0,
616
+ "grad_norm": 2.2247564792633057,
617
+ "learning_rate": 0.0002,
618
+ "loss": 0.7636,
619
+ "step": 435
620
+ },
621
+ {
622
+ "epoch": 3.0346620450606587,
623
+ "grad_norm": 0.3730102479457855,
624
+ "learning_rate": 0.0002,
625
+ "loss": 0.4291,
626
+ "step": 440
627
+ },
628
+ {
629
+ "epoch": 3.069324090121317,
630
+ "grad_norm": 0.36571791768074036,
631
+ "learning_rate": 0.0002,
632
+ "loss": 0.3155,
633
+ "step": 445
634
+ },
635
+ {
636
+ "epoch": 3.1039861351819757,
637
+ "grad_norm": 0.34427550435066223,
638
+ "learning_rate": 0.0002,
639
+ "loss": 0.2297,
640
+ "step": 450
641
+ },
642
+ {
643
+ "epoch": 3.1386481802426345,
644
+ "grad_norm": 0.3725241422653198,
645
+ "learning_rate": 0.0002,
646
+ "loss": 0.173,
647
+ "step": 455
648
+ },
649
+ {
650
+ "epoch": 3.1733102253032928,
651
+ "grad_norm": 0.9735671877861023,
652
+ "learning_rate": 0.0002,
653
+ "loss": 0.8876,
654
+ "step": 460
655
+ },
656
+ {
657
+ "epoch": 3.2079722703639515,
658
+ "grad_norm": 3.0348145961761475,
659
+ "learning_rate": 0.0002,
660
+ "loss": 0.7825,
661
+ "step": 465
662
+ },
663
+ {
664
+ "epoch": 3.2426343154246102,
665
+ "grad_norm": 1.4603136777877808,
666
+ "learning_rate": 0.0002,
667
+ "loss": 0.8017,
668
+ "step": 470
669
+ },
670
+ {
671
+ "epoch": 3.2772963604852685,
672
+ "grad_norm": 0.6849704384803772,
673
+ "learning_rate": 0.0002,
674
+ "loss": 0.6029,
675
+ "step": 475
676
+ },
677
+ {
678
+ "epoch": 3.3119584055459272,
679
+ "grad_norm": 0.45950087904930115,
680
+ "learning_rate": 0.0002,
681
+ "loss": 0.3388,
682
+ "step": 480
683
+ },
684
+ {
685
+ "epoch": 3.346620450606586,
686
+ "grad_norm": 0.3234940469264984,
687
+ "learning_rate": 0.0002,
688
+ "loss": 0.2635,
689
+ "step": 485
690
+ },
691
+ {
692
+ "epoch": 3.3812824956672443,
693
+ "grad_norm": 0.3088044822216034,
694
+ "learning_rate": 0.0002,
695
+ "loss": 0.1867,
696
+ "step": 490
697
+ },
698
+ {
699
+ "epoch": 3.415944540727903,
700
+ "grad_norm": 0.36887720227241516,
701
+ "learning_rate": 0.0002,
702
+ "loss": 0.1653,
703
+ "step": 495
704
+ },
705
+ {
706
+ "epoch": 3.4506065857885613,
707
+ "grad_norm": 1.041858196258545,
708
+ "learning_rate": 0.0002,
709
+ "loss": 0.9041,
710
+ "step": 500
711
+ },
712
+ {
713
+ "epoch": 3.48526863084922,
714
+ "grad_norm": 1.4774988889694214,
715
+ "learning_rate": 0.0002,
716
+ "loss": 0.9789,
717
+ "step": 505
718
+ },
719
+ {
720
+ "epoch": 3.5199306759098787,
721
+ "grad_norm": 0.6804758310317993,
722
+ "learning_rate": 0.0002,
723
+ "loss": 0.5891,
724
+ "step": 510
725
+ },
726
+ {
727
+ "epoch": 3.554592720970537,
728
+ "grad_norm": 0.43344879150390625,
729
+ "learning_rate": 0.0002,
730
+ "loss": 0.3632,
731
+ "step": 515
732
+ },
733
+ {
734
+ "epoch": 3.5892547660311958,
735
+ "grad_norm": 0.4160469174385071,
736
+ "learning_rate": 0.0002,
737
+ "loss": 0.2734,
738
+ "step": 520
739
+ },
740
+ {
741
+ "epoch": 3.6239168110918545,
742
+ "grad_norm": 0.35103052854537964,
743
+ "learning_rate": 0.0002,
744
+ "loss": 0.2215,
745
+ "step": 525
746
+ },
747
+ {
748
+ "epoch": 3.6585788561525128,
749
+ "grad_norm": 1.083409309387207,
750
+ "learning_rate": 0.0002,
751
+ "loss": 0.2623,
752
+ "step": 530
753
+ },
754
+ {
755
+ "epoch": 3.6932409012131715,
756
+ "grad_norm": 1.2548085451126099,
757
+ "learning_rate": 0.0002,
758
+ "loss": 0.9395,
759
+ "step": 535
760
+ },
761
+ {
762
+ "epoch": 3.7279029462738302,
763
+ "grad_norm": 2.565399169921875,
764
+ "learning_rate": 0.0002,
765
+ "loss": 0.9097,
766
+ "step": 540
767
+ },
768
+ {
769
+ "epoch": 3.7625649913344885,
770
+ "grad_norm": 0.6658923625946045,
771
+ "learning_rate": 0.0002,
772
+ "loss": 0.739,
773
+ "step": 545
774
+ },
775
+ {
776
+ "epoch": 3.7972270363951472,
777
+ "grad_norm": 0.4989807605743408,
778
+ "learning_rate": 0.0002,
779
+ "loss": 0.396,
780
+ "step": 550
781
+ },
782
+ {
783
+ "epoch": 3.831889081455806,
784
+ "grad_norm": 0.39474496245384216,
785
+ "learning_rate": 0.0002,
786
+ "loss": 0.2809,
787
+ "step": 555
788
+ },
789
+ {
790
+ "epoch": 3.8665511265164643,
791
+ "grad_norm": 0.38600996136665344,
792
+ "learning_rate": 0.0002,
793
+ "loss": 0.2254,
794
+ "step": 560
795
+ },
796
+ {
797
+ "epoch": 3.901213171577123,
798
+ "grad_norm": 0.3662823736667633,
799
+ "learning_rate": 0.0002,
800
+ "loss": 0.167,
801
+ "step": 565
802
+ },
803
+ {
804
+ "epoch": 3.9358752166377817,
805
+ "grad_norm": 1.349672794342041,
806
+ "learning_rate": 0.0002,
807
+ "loss": 1.1593,
808
+ "step": 570
809
+ },
810
+ {
811
+ "epoch": 3.97053726169844,
812
+ "grad_norm": 2.3923165798187256,
813
+ "learning_rate": 0.0002,
814
+ "loss": 0.8778,
815
+ "step": 575
816
+ },
817
+ {
818
+ "epoch": 4.0,
819
+ "grad_norm": 0.7578555345535278,
820
+ "learning_rate": 0.0002,
821
+ "loss": 0.6897,
822
+ "step": 580
823
+ },
824
+ {
825
+ "epoch": 4.034662045060658,
826
+ "grad_norm": 0.5052911043167114,
827
+ "learning_rate": 0.0002,
828
+ "loss": 0.3913,
829
+ "step": 585
830
+ },
831
+ {
832
+ "epoch": 4.0693240901213175,
833
+ "grad_norm": 0.5212499499320984,
834
+ "learning_rate": 0.0002,
835
+ "loss": 0.2326,
836
+ "step": 590
837
+ },
838
+ {
839
+ "epoch": 4.103986135181976,
840
+ "grad_norm": 0.452105313539505,
841
+ "learning_rate": 0.0002,
842
+ "loss": 0.1846,
843
+ "step": 595
844
+ },
845
+ {
846
+ "epoch": 4.138648180242634,
847
+ "grad_norm": 0.4193221926689148,
848
+ "learning_rate": 0.0002,
849
+ "loss": 0.1359,
850
+ "step": 600
851
+ },
852
+ {
853
+ "epoch": 4.173310225303293,
854
+ "grad_norm": 2.3956053256988525,
855
+ "learning_rate": 0.0002,
856
+ "loss": 0.3795,
857
+ "step": 605
858
+ },
859
+ {
860
+ "epoch": 4.2079722703639515,
861
+ "grad_norm": 1.946535348892212,
862
+ "learning_rate": 0.0002,
863
+ "loss": 0.579,
864
+ "step": 610
865
+ },
866
+ {
867
+ "epoch": 4.24263431542461,
868
+ "grad_norm": 1.874873161315918,
869
+ "learning_rate": 0.0002,
870
+ "loss": 0.7528,
871
+ "step": 615
872
+ },
873
+ {
874
+ "epoch": 4.277296360485269,
875
+ "grad_norm": 0.6922146081924438,
876
+ "learning_rate": 0.0002,
877
+ "loss": 0.4398,
878
+ "step": 620
879
+ },
880
+ {
881
+ "epoch": 4.311958405545927,
882
+ "grad_norm": 0.5228244662284851,
883
+ "learning_rate": 0.0002,
884
+ "loss": 0.2615,
885
+ "step": 625
886
+ },
887
+ {
888
+ "epoch": 4.3466204506065855,
889
+ "grad_norm": 0.34687915444374084,
890
+ "learning_rate": 0.0002,
891
+ "loss": 0.191,
892
+ "step": 630
893
+ },
894
+ {
895
+ "epoch": 4.381282495667245,
896
+ "grad_norm": 0.4160069525241852,
897
+ "learning_rate": 0.0002,
898
+ "loss": 0.1434,
899
+ "step": 635
900
+ },
901
+ {
902
+ "epoch": 4.415944540727903,
903
+ "grad_norm": 1.468666434288025,
904
+ "learning_rate": 0.0002,
905
+ "loss": 0.61,
906
+ "step": 640
907
+ },
908
+ {
909
+ "epoch": 4.450606585788561,
910
+ "grad_norm": 3.174201488494873,
911
+ "learning_rate": 0.0002,
912
+ "loss": 0.5773,
913
+ "step": 645
914
+ },
915
+ {
916
+ "epoch": 4.4852686308492205,
917
+ "grad_norm": 1.8258005380630493,
918
+ "learning_rate": 0.0002,
919
+ "loss": 0.7495,
920
+ "step": 650
921
+ },
922
+ {
923
+ "epoch": 4.519930675909879,
924
+ "grad_norm": 0.8468143343925476,
925
+ "learning_rate": 0.0002,
926
+ "loss": 0.5441,
927
+ "step": 655
928
+ },
929
+ {
930
+ "epoch": 4.554592720970537,
931
+ "grad_norm": 0.5467656254768372,
932
+ "learning_rate": 0.0002,
933
+ "loss": 0.2906,
934
+ "step": 660
935
+ },
936
+ {
937
+ "epoch": 4.589254766031196,
938
+ "grad_norm": 0.396992564201355,
939
+ "learning_rate": 0.0002,
940
+ "loss": 0.2186,
941
+ "step": 665
942
+ },
943
+ {
944
+ "epoch": 4.6239168110918545,
945
+ "grad_norm": 0.31931889057159424,
946
+ "learning_rate": 0.0002,
947
+ "loss": 0.1629,
948
+ "step": 670
949
+ },
950
+ {
951
+ "epoch": 4.658578856152513,
952
+ "grad_norm": 1.755745530128479,
953
+ "learning_rate": 0.0002,
954
+ "loss": 0.2292,
955
+ "step": 675
956
+ },
957
+ {
958
+ "epoch": 4.693240901213172,
959
+ "grad_norm": 0.9869062900543213,
960
+ "learning_rate": 0.0002,
961
+ "loss": 0.6716,
962
+ "step": 680
963
+ },
964
+ {
965
+ "epoch": 4.72790294627383,
966
+ "grad_norm": 1.5987203121185303,
967
+ "learning_rate": 0.0002,
968
+ "loss": 0.8182,
969
+ "step": 685
970
+ },
971
+ {
972
+ "epoch": 4.7625649913344885,
973
+ "grad_norm": 0.870819091796875,
974
+ "learning_rate": 0.0002,
975
+ "loss": 0.5902,
976
+ "step": 690
977
+ },
978
+ {
979
+ "epoch": 4.797227036395148,
980
+ "grad_norm": 0.5098839402198792,
981
+ "learning_rate": 0.0002,
982
+ "loss": 0.3224,
983
+ "step": 695
984
+ },
985
+ {
986
+ "epoch": 4.831889081455806,
987
+ "grad_norm": 0.5435961484909058,
988
+ "learning_rate": 0.0002,
989
+ "loss": 0.2182,
990
+ "step": 700
991
+ },
992
+ {
993
+ "epoch": 4.866551126516464,
994
+ "grad_norm": 0.33275553584098816,
995
+ "learning_rate": 0.0002,
996
+ "loss": 0.1595,
997
+ "step": 705
998
+ },
999
+ {
1000
+ "epoch": 4.9012131715771226,
1001
+ "grad_norm": 1.8109265565872192,
1002
+ "learning_rate": 0.0002,
1003
+ "loss": 0.1985,
1004
+ "step": 710
1005
+ },
1006
+ {
1007
+ "epoch": 4.935875216637782,
1008
+ "grad_norm": 1.149431824684143,
1009
+ "learning_rate": 0.0002,
1010
+ "loss": 0.8148,
1011
+ "step": 715
1012
+ },
1013
+ {
1014
+ "epoch": 4.97053726169844,
1015
+ "grad_norm": 1.4355350732803345,
1016
+ "learning_rate": 0.0002,
1017
+ "loss": 0.6675,
1018
+ "step": 720
1019
+ },
1020
+ {
1021
+ "epoch": 5.0,
1022
+ "grad_norm": 2.76149845123291,
1023
+ "learning_rate": 0.0002,
1024
+ "loss": 0.5541,
1025
+ "step": 725
1026
+ },
1027
+ {
1028
+ "epoch": 5.034662045060658,
1029
+ "grad_norm": 0.6026546359062195,
1030
+ "learning_rate": 0.0002,
1031
+ "loss": 0.3515,
1032
+ "step": 730
1033
+ },
1034
+ {
1035
+ "epoch": 5.0693240901213175,
1036
+ "grad_norm": 0.37150222063064575,
1037
+ "learning_rate": 0.0002,
1038
+ "loss": 0.1661,
1039
+ "step": 735
1040
+ },
1041
+ {
1042
+ "epoch": 5.103986135181976,
1043
+ "grad_norm": 0.31225013732910156,
1044
+ "learning_rate": 0.0002,
1045
+ "loss": 0.1243,
1046
+ "step": 740
1047
+ },
1048
+ {
1049
+ "epoch": 5.138648180242634,
1050
+ "grad_norm": 0.4382600784301758,
1051
+ "learning_rate": 0.0002,
1052
+ "loss": 0.1004,
1053
+ "step": 745
1054
+ },
1055
+ {
1056
+ "epoch": 5.173310225303293,
1057
+ "grad_norm": 2.0306389331817627,
1058
+ "learning_rate": 0.0002,
1059
+ "loss": 0.3743,
1060
+ "step": 750
1061
+ },
1062
+ {
1063
+ "epoch": 5.2079722703639515,
1064
+ "grad_norm": 1.6935468912124634,
1065
+ "learning_rate": 0.0002,
1066
+ "loss": 0.4202,
1067
+ "step": 755
1068
+ },
1069
+ {
1070
+ "epoch": 5.24263431542461,
1071
+ "grad_norm": 1.4990637302398682,
1072
+ "learning_rate": 0.0002,
1073
+ "loss": 0.5533,
1074
+ "step": 760
1075
+ },
1076
+ {
1077
+ "epoch": 5.277296360485269,
1078
+ "grad_norm": 0.6687419414520264,
1079
+ "learning_rate": 0.0002,
1080
+ "loss": 0.3429,
1081
+ "step": 765
1082
+ },
1083
+ {
1084
+ "epoch": 5.311958405545927,
1085
+ "grad_norm": 0.5400169491767883,
1086
+ "learning_rate": 0.0002,
1087
+ "loss": 0.1759,
1088
+ "step": 770
1089
+ },
1090
+ {
1091
+ "epoch": 5.3466204506065855,
1092
+ "grad_norm": 0.39679139852523804,
1093
+ "learning_rate": 0.0002,
1094
+ "loss": 0.1395,
1095
+ "step": 775
1096
+ },
1097
+ {
1098
+ "epoch": 5.381282495667245,
1099
+ "grad_norm": 0.33043885231018066,
1100
+ "learning_rate": 0.0002,
1101
+ "loss": 0.1004,
1102
+ "step": 780
1103
+ },
1104
+ {
1105
+ "epoch": 5.415944540727903,
1106
+ "grad_norm": 3.1912200450897217,
1107
+ "learning_rate": 0.0002,
1108
+ "loss": 0.305,
1109
+ "step": 785
1110
+ },
1111
+ {
1112
+ "epoch": 5.450606585788561,
1113
+ "grad_norm": 1.2743686437606812,
1114
+ "learning_rate": 0.0002,
1115
+ "loss": 0.4876,
1116
+ "step": 790
1117
+ },
1118
+ {
1119
+ "epoch": 5.4852686308492205,
1120
+ "grad_norm": 2.9798948764801025,
1121
+ "learning_rate": 0.0002,
1122
+ "loss": 0.7476,
1123
+ "step": 795
1124
+ },
1125
+ {
1126
+ "epoch": 5.519930675909879,
1127
+ "grad_norm": 0.7342365384101868,
1128
+ "learning_rate": 0.0002,
1129
+ "loss": 0.463,
1130
+ "step": 800
1131
+ },
1132
+ {
1133
+ "epoch": 5.554592720970537,
1134
+ "grad_norm": 0.5035507678985596,
1135
+ "learning_rate": 0.0002,
1136
+ "loss": 0.2116,
1137
+ "step": 805
1138
+ },
1139
+ {
1140
+ "epoch": 5.589254766031196,
1141
+ "grad_norm": 0.4394471347332001,
1142
+ "learning_rate": 0.0002,
1143
+ "loss": 0.1568,
1144
+ "step": 810
1145
+ },
1146
+ {
1147
+ "epoch": 5.6239168110918545,
1148
+ "grad_norm": 0.383515328168869,
1149
+ "learning_rate": 0.0002,
1150
+ "loss": 0.1035,
1151
+ "step": 815
1152
+ },
1153
+ {
1154
+ "epoch": 5.658578856152513,
1155
+ "grad_norm": 2.142784357070923,
1156
+ "learning_rate": 0.0002,
1157
+ "loss": 0.3458,
1158
+ "step": 820
1159
+ },
1160
+ {
1161
+ "epoch": 5.693240901213172,
1162
+ "grad_norm": 1.2484018802642822,
1163
+ "learning_rate": 0.0002,
1164
+ "loss": 0.3576,
1165
+ "step": 825
1166
+ },
1167
+ {
1168
+ "epoch": 5.72790294627383,
1169
+ "grad_norm": 2.6863198280334473,
1170
+ "learning_rate": 0.0002,
1171
+ "loss": 0.5996,
1172
+ "step": 830
1173
+ },
1174
+ {
1175
+ "epoch": 5.7625649913344885,
1176
+ "grad_norm": 1.098381757736206,
1177
+ "learning_rate": 0.0002,
1178
+ "loss": 0.4993,
1179
+ "step": 835
1180
+ },
1181
+ {
1182
+ "epoch": 5.797227036395148,
1183
+ "grad_norm": 0.5609210133552551,
1184
+ "learning_rate": 0.0002,
1185
+ "loss": 0.2608,
1186
+ "step": 840
1187
+ },
1188
+ {
1189
+ "epoch": 5.831889081455806,
1190
+ "grad_norm": 0.5123816132545471,
1191
+ "learning_rate": 0.0002,
1192
+ "loss": 0.1799,
1193
+ "step": 845
1194
+ },
1195
+ {
1196
+ "epoch": 5.866551126516464,
1197
+ "grad_norm": 0.46399134397506714,
1198
+ "learning_rate": 0.0002,
1199
+ "loss": 0.1254,
1200
+ "step": 850
1201
+ },
1202
+ {
1203
+ "epoch": 5.9012131715771226,
1204
+ "grad_norm": 0.5089249014854431,
1205
+ "learning_rate": 0.0002,
1206
+ "loss": 0.0934,
1207
+ "step": 855
1208
+ },
1209
+ {
1210
+ "epoch": 5.935875216637782,
1211
+ "grad_norm": 1.3031930923461914,
1212
+ "learning_rate": 0.0002,
1213
+ "loss": 0.6664,
1214
+ "step": 860
1215
+ },
1216
+ {
1217
+ "epoch": 5.97053726169844,
1218
+ "grad_norm": 2.294696569442749,
1219
+ "learning_rate": 0.0002,
1220
+ "loss": 0.6034,
1221
+ "step": 865
1222
+ },
1223
+ {
1224
+ "epoch": 6.0,
1225
+ "grad_norm": 2.738062620162964,
1226
+ "learning_rate": 0.0002,
1227
+ "loss": 0.587,
1228
+ "step": 870
1229
+ },
1230
+ {
1231
+ "epoch": 6.034662045060658,
1232
+ "grad_norm": 0.6086808443069458,
1233
+ "learning_rate": 0.0002,
1234
+ "loss": 0.252,
1235
+ "step": 875
1236
+ },
1237
+ {
1238
+ "epoch": 6.0693240901213175,
1239
+ "grad_norm": 0.4935630261898041,
1240
+ "learning_rate": 0.0002,
1241
+ "loss": 0.1223,
1242
+ "step": 880
1243
+ },
1244
+ {
1245
+ "epoch": 6.103986135181976,
1246
+ "grad_norm": 0.43656599521636963,
1247
+ "learning_rate": 0.0002,
1248
+ "loss": 0.0882,
1249
+ "step": 885
1250
+ },
1251
+ {
1252
+ "epoch": 6.138648180242634,
1253
+ "grad_norm": 0.2987945079803467,
1254
+ "learning_rate": 0.0002,
1255
+ "loss": 0.0629,
1256
+ "step": 890
1257
+ },
1258
+ {
1259
+ "epoch": 6.173310225303293,
1260
+ "grad_norm": 1.7174897193908691,
1261
+ "learning_rate": 0.0002,
1262
+ "loss": 0.4102,
1263
+ "step": 895
1264
+ },
1265
+ {
1266
+ "epoch": 6.2079722703639515,
1267
+ "grad_norm": 2.4946401119232178,
1268
+ "learning_rate": 0.0002,
1269
+ "loss": 0.2899,
1270
+ "step": 900
1271
+ },
1272
+ {
1273
+ "epoch": 6.24263431542461,
1274
+ "grad_norm": 2.8931374549865723,
1275
+ "learning_rate": 0.0002,
1276
+ "loss": 0.4676,
1277
+ "step": 905
1278
+ },
1279
+ {
1280
+ "epoch": 6.277296360485269,
1281
+ "grad_norm": 0.8096083998680115,
1282
+ "learning_rate": 0.0002,
1283
+ "loss": 0.3168,
1284
+ "step": 910
1285
+ },
1286
+ {
1287
+ "epoch": 6.311958405545927,
1288
+ "grad_norm": 0.4966631531715393,
1289
+ "learning_rate": 0.0002,
1290
+ "loss": 0.1399,
1291
+ "step": 915
1292
+ },
1293
+ {
1294
+ "epoch": 6.3466204506065855,
1295
+ "grad_norm": 0.46740466356277466,
1296
+ "learning_rate": 0.0002,
1297
+ "loss": 0.1037,
1298
+ "step": 920
1299
+ },
1300
+ {
1301
+ "epoch": 6.381282495667245,
1302
+ "grad_norm": 0.3550221920013428,
1303
+ "learning_rate": 0.0002,
1304
+ "loss": 0.0682,
1305
+ "step": 925
1306
+ },
1307
+ {
1308
+ "epoch": 6.415944540727903,
1309
+ "grad_norm": 1.7010166645050049,
1310
+ "learning_rate": 0.0002,
1311
+ "loss": 0.401,
1312
+ "step": 930
1313
+ },
1314
+ {
1315
+ "epoch": 6.450606585788561,
1316
+ "grad_norm": 1.4712696075439453,
1317
+ "learning_rate": 0.0002,
1318
+ "loss": 0.2843,
1319
+ "step": 935
1320
+ },
1321
+ {
1322
+ "epoch": 6.4852686308492205,
1323
+ "grad_norm": 1.702062964439392,
1324
+ "learning_rate": 0.0002,
1325
+ "loss": 0.5166,
1326
+ "step": 940
1327
+ },
1328
+ {
1329
+ "epoch": 6.519930675909879,
1330
+ "grad_norm": 0.6730090379714966,
1331
+ "learning_rate": 0.0002,
1332
+ "loss": 0.3467,
1333
+ "step": 945
1334
+ },
1335
+ {
1336
+ "epoch": 6.554592720970537,
1337
+ "grad_norm": 0.6367856860160828,
1338
+ "learning_rate": 0.0002,
1339
+ "loss": 0.1564,
1340
+ "step": 950
1341
+ },
1342
+ {
1343
+ "epoch": 6.589254766031196,
1344
+ "grad_norm": 0.5671469569206238,
1345
+ "learning_rate": 0.0002,
1346
+ "loss": 0.1267,
1347
+ "step": 955
1348
+ },
1349
+ {
1350
+ "epoch": 6.6239168110918545,
1351
+ "grad_norm": 0.29594796895980835,
1352
+ "learning_rate": 0.0002,
1353
+ "loss": 0.0927,
1354
+ "step": 960
1355
+ },
1356
+ {
1357
+ "epoch": 6.658578856152513,
1358
+ "grad_norm": 0.6945505738258362,
1359
+ "learning_rate": 0.0002,
1360
+ "loss": 0.0982,
1361
+ "step": 965
1362
+ },
1363
+ {
1364
+ "epoch": 6.693240901213172,
1365
+ "grad_norm": 1.2007991075515747,
1366
+ "learning_rate": 0.0002,
1367
+ "loss": 0.4829,
1368
+ "step": 970
1369
+ },
1370
+ {
1371
+ "epoch": 6.72790294627383,
1372
+ "grad_norm": 4.258643627166748,
1373
+ "learning_rate": 0.0002,
1374
+ "loss": 0.5014,
1375
+ "step": 975
1376
+ },
1377
+ {
1378
+ "epoch": 6.7625649913344885,
1379
+ "grad_norm": 1.2368519306182861,
1380
+ "learning_rate": 0.0002,
1381
+ "loss": 0.4639,
1382
+ "step": 980
1383
+ },
1384
+ {
1385
+ "epoch": 6.797227036395148,
1386
+ "grad_norm": 0.5854914784431458,
1387
+ "learning_rate": 0.0002,
1388
+ "loss": 0.1885,
1389
+ "step": 985
1390
+ },
1391
+ {
1392
+ "epoch": 6.831889081455806,
1393
+ "grad_norm": 0.433727890253067,
1394
+ "learning_rate": 0.0002,
1395
+ "loss": 0.1182,
1396
+ "step": 990
1397
+ },
1398
+ {
1399
+ "epoch": 6.866551126516464,
1400
+ "grad_norm": 0.37968766689300537,
1401
+ "learning_rate": 0.0002,
1402
+ "loss": 0.0907,
1403
+ "step": 995
1404
+ },
1405
+ {
1406
+ "epoch": 6.9012131715771226,
1407
+ "grad_norm": 0.49255871772766113,
1408
+ "learning_rate": 0.0002,
1409
+ "loss": 0.0748,
1410
+ "step": 1000
1411
+ },
1412
+ {
1413
+ "epoch": 6.935875216637782,
1414
+ "grad_norm": 0.8562117218971252,
1415
+ "learning_rate": 0.0002,
1416
+ "loss": 0.301,
1417
+ "step": 1005
1418
+ },
1419
+ {
1420
+ "epoch": 6.97053726169844,
1421
+ "grad_norm": 2.18452787399292,
1422
+ "learning_rate": 0.0002,
1423
+ "loss": 0.5265,
1424
+ "step": 1010
1425
+ },
1426
+ {
1427
+ "epoch": 7.0,
1428
+ "grad_norm": 5.248262405395508,
1429
+ "learning_rate": 0.0002,
1430
+ "loss": 0.4677,
1431
+ "step": 1015
1432
+ },
1433
+ {
1434
+ "epoch": 7.034662045060658,
1435
+ "grad_norm": 0.6046018600463867,
1436
+ "learning_rate": 0.0002,
1437
+ "loss": 0.1937,
1438
+ "step": 1020
1439
+ },
1440
+ {
1441
+ "epoch": 7.0693240901213175,
1442
+ "grad_norm": 0.4035234749317169,
1443
+ "learning_rate": 0.0002,
1444
+ "loss": 0.0889,
1445
+ "step": 1025
1446
+ },
1447
+ {
1448
+ "epoch": 7.103986135181976,
1449
+ "grad_norm": 0.41130027174949646,
1450
+ "learning_rate": 0.0002,
1451
+ "loss": 0.0768,
1452
+ "step": 1030
1453
+ },
1454
+ {
1455
+ "epoch": 7.138648180242634,
1456
+ "grad_norm": 0.43616095185279846,
1457
+ "learning_rate": 0.0002,
1458
+ "loss": 0.062,
1459
+ "step": 1035
1460
+ },
1461
+ {
1462
+ "epoch": 7.173310225303293,
1463
+ "grad_norm": 1.4820456504821777,
1464
+ "learning_rate": 0.0002,
1465
+ "loss": 0.2592,
1466
+ "step": 1040
1467
+ },
1468
+ {
1469
+ "epoch": 7.2079722703639515,
1470
+ "grad_norm": 2.2512240409851074,
1471
+ "learning_rate": 0.0002,
1472
+ "loss": 0.2771,
1473
+ "step": 1045
1474
+ },
1475
+ {
1476
+ "epoch": 7.24263431542461,
1477
+ "grad_norm": 1.473806619644165,
1478
+ "learning_rate": 0.0002,
1479
+ "loss": 0.3877,
1480
+ "step": 1050
1481
+ },
1482
+ {
1483
+ "epoch": 7.277296360485269,
1484
+ "grad_norm": 0.7703912258148193,
1485
+ "learning_rate": 0.0002,
1486
+ "loss": 0.2664,
1487
+ "step": 1055
1488
+ },
1489
+ {
1490
+ "epoch": 7.311958405545927,
1491
+ "grad_norm": 0.5043675303459167,
1492
+ "learning_rate": 0.0002,
1493
+ "loss": 0.1109,
1494
+ "step": 1060
1495
+ },
1496
+ {
1497
+ "epoch": 7.3466204506065855,
1498
+ "grad_norm": 0.43726152181625366,
1499
+ "learning_rate": 0.0002,
1500
+ "loss": 0.0839,
1501
+ "step": 1065
1502
+ },
1503
+ {
1504
+ "epoch": 7.381282495667245,
1505
+ "grad_norm": 0.4088805615901947,
1506
+ "learning_rate": 0.0002,
1507
+ "loss": 0.0627,
1508
+ "step": 1070
1509
+ },
1510
+ {
1511
+ "epoch": 7.415944540727903,
1512
+ "grad_norm": 2.5372557640075684,
1513
+ "learning_rate": 0.0002,
1514
+ "loss": 0.1959,
1515
+ "step": 1075
1516
+ },
1517
+ {
1518
+ "epoch": 7.450606585788561,
1519
+ "grad_norm": 2.1121976375579834,
1520
+ "learning_rate": 0.0002,
1521
+ "loss": 0.3118,
1522
+ "step": 1080
1523
+ },
1524
+ {
1525
+ "epoch": 7.4852686308492205,
1526
+ "grad_norm": 2.125603199005127,
1527
+ "learning_rate": 0.0002,
1528
+ "loss": 0.565,
1529
+ "step": 1085
1530
+ },
1531
+ {
1532
+ "epoch": 7.519930675909879,
1533
+ "grad_norm": 0.8563218116760254,
1534
+ "learning_rate": 0.0002,
1535
+ "loss": 0.4099,
1536
+ "step": 1090
1537
+ },
1538
+ {
1539
+ "epoch": 7.554592720970537,
1540
+ "grad_norm": 0.4825403392314911,
1541
+ "learning_rate": 0.0002,
1542
+ "loss": 0.1419,
1543
+ "step": 1095
1544
+ },
1545
+ {
1546
+ "epoch": 7.589254766031196,
1547
+ "grad_norm": 0.4735303521156311,
1548
+ "learning_rate": 0.0002,
1549
+ "loss": 0.09,
1550
+ "step": 1100
1551
+ },
1552
+ {
1553
+ "epoch": 7.6239168110918545,
1554
+ "grad_norm": 0.24926654994487762,
1555
+ "learning_rate": 0.0002,
1556
+ "loss": 0.0699,
1557
+ "step": 1105
1558
+ },
1559
+ {
1560
+ "epoch": 7.658578856152513,
1561
+ "grad_norm": 0.2843971252441406,
1562
+ "learning_rate": 0.0002,
1563
+ "loss": 0.0602,
1564
+ "step": 1110
1565
+ },
1566
+ {
1567
+ "epoch": 7.693240901213172,
1568
+ "grad_norm": 0.9436930418014526,
1569
+ "learning_rate": 0.0002,
1570
+ "loss": 0.3591,
1571
+ "step": 1115
1572
+ },
1573
+ {
1574
+ "epoch": 7.72790294627383,
1575
+ "grad_norm": 1.8918225765228271,
1576
+ "learning_rate": 0.0002,
1577
+ "loss": 0.4049,
1578
+ "step": 1120
1579
+ },
1580
+ {
1581
+ "epoch": 7.7625649913344885,
1582
+ "grad_norm": 1.1229664087295532,
1583
+ "learning_rate": 0.0002,
1584
+ "loss": 0.4094,
1585
+ "step": 1125
1586
+ },
1587
+ {
1588
+ "epoch": 7.797227036395148,
1589
+ "grad_norm": 0.6665800213813782,
1590
+ "learning_rate": 0.0002,
1591
+ "loss": 0.1265,
1592
+ "step": 1130
1593
+ },
1594
+ {
1595
+ "epoch": 7.831889081455806,
1596
+ "grad_norm": 0.38160014152526855,
1597
+ "learning_rate": 0.0002,
1598
+ "loss": 0.0895,
1599
+ "step": 1135
1600
+ },
1601
+ {
1602
+ "epoch": 7.866551126516464,
1603
+ "grad_norm": 0.5825662612915039,
1604
+ "learning_rate": 0.0002,
1605
+ "loss": 0.0637,
1606
+ "step": 1140
1607
+ },
1608
+ {
1609
+ "epoch": 7.9012131715771226,
1610
+ "grad_norm": 2.218074321746826,
1611
+ "learning_rate": 0.0002,
1612
+ "loss": 0.22,
1613
+ "step": 1145
1614
+ },
1615
+ {
1616
+ "epoch": 7.935875216637782,
1617
+ "grad_norm": 1.0831362009048462,
1618
+ "learning_rate": 0.0002,
1619
+ "loss": 0.3117,
1620
+ "step": 1150
1621
+ },
1622
+ {
1623
+ "epoch": 7.97053726169844,
1624
+ "grad_norm": 1.6957491636276245,
1625
+ "learning_rate": 0.0002,
1626
+ "loss": 0.3566,
1627
+ "step": 1155
1628
+ },
1629
+ {
1630
+ "epoch": 8.0,
1631
+ "grad_norm": 6.261979103088379,
1632
+ "learning_rate": 0.0002,
1633
+ "loss": 0.4143,
1634
+ "step": 1160
1635
+ },
1636
+ {
1637
+ "epoch": 8.090121317157712,
1638
+ "grad_norm": 0.3784933388233185,
1639
+ "learning_rate": 0.0002,
1640
+ "loss": 0.0921,
1641
+ "step": 1165
1642
+ },
1643
+ {
1644
+ "epoch": 8.124783362218372,
1645
+ "grad_norm": 0.5006704330444336,
1646
+ "learning_rate": 0.0002,
1647
+ "loss": 0.0649,
1648
+ "step": 1170
1649
+ },
1650
+ {
1651
+ "epoch": 8.15944540727903,
1652
+ "grad_norm": 1.7417300939559937,
1653
+ "learning_rate": 0.0002,
1654
+ "loss": 0.1036,
1655
+ "step": 1175
1656
+ },
1657
+ {
1658
+ "epoch": 8.194107452339688,
1659
+ "grad_norm": 0.5341992974281311,
1660
+ "learning_rate": 0.0002,
1661
+ "loss": 0.2169,
1662
+ "step": 1180
1663
+ },
1664
+ {
1665
+ "epoch": 8.228769497400346,
1666
+ "grad_norm": 1.425203800201416,
1667
+ "learning_rate": 0.0002,
1668
+ "loss": 0.3661,
1669
+ "step": 1185
1670
+ },
1671
+ {
1672
+ "epoch": 8.263431542461005,
1673
+ "grad_norm": 0.8877242803573608,
1674
+ "learning_rate": 0.0002,
1675
+ "loss": 0.3186,
1676
+ "step": 1190
1677
+ },
1678
+ {
1679
+ "epoch": 8.298093587521663,
1680
+ "grad_norm": 0.5418034195899963,
1681
+ "learning_rate": 0.0002,
1682
+ "loss": 0.1068,
1683
+ "step": 1195
1684
+ },
1685
+ {
1686
+ "epoch": 8.332755632582323,
1687
+ "grad_norm": 0.44961827993392944,
1688
+ "learning_rate": 0.0002,
1689
+ "loss": 0.0702,
1690
+ "step": 1200
1691
+ },
1692
+ {
1693
+ "epoch": 8.367417677642981,
1694
+ "grad_norm": 0.38408568501472473,
1695
+ "learning_rate": 0.0002,
1696
+ "loss": 0.0578,
1697
+ "step": 1205
1698
+ },
1699
+ {
1700
+ "epoch": 8.40207972270364,
1701
+ "grad_norm": 0.28024882078170776,
1702
+ "learning_rate": 0.0002,
1703
+ "loss": 0.0554,
1704
+ "step": 1210
1705
+ },
1706
+ {
1707
+ "epoch": 8.436741767764298,
1708
+ "grad_norm": 1.7511780261993408,
1709
+ "learning_rate": 0.0002,
1710
+ "loss": 0.266,
1711
+ "step": 1215
1712
+ },
1713
+ {
1714
+ "epoch": 8.471403812824956,
1715
+ "grad_norm": 2.1751325130462646,
1716
+ "learning_rate": 0.0002,
1717
+ "loss": 0.361,
1718
+ "step": 1220
1719
+ },
1720
+ {
1721
+ "epoch": 8.506065857885615,
1722
+ "grad_norm": 1.0328117609024048,
1723
+ "learning_rate": 0.0002,
1724
+ "loss": 0.3873,
1725
+ "step": 1225
1726
+ },
1727
+ {
1728
+ "epoch": 8.540727902946275,
1729
+ "grad_norm": 0.4595634937286377,
1730
+ "learning_rate": 0.0002,
1731
+ "loss": 0.1175,
1732
+ "step": 1230
1733
+ },
1734
+ {
1735
+ "epoch": 8.575389948006933,
1736
+ "grad_norm": 0.36790379881858826,
1737
+ "learning_rate": 0.0002,
1738
+ "loss": 0.0759,
1739
+ "step": 1235
1740
+ },
1741
+ {
1742
+ "epoch": 8.610051993067591,
1743
+ "grad_norm": 0.3406282663345337,
1744
+ "learning_rate": 0.0002,
1745
+ "loss": 0.0655,
1746
+ "step": 1240
1747
+ },
1748
+ {
1749
+ "epoch": 8.64471403812825,
1750
+ "grad_norm": 0.312312513589859,
1751
+ "learning_rate": 0.0002,
1752
+ "loss": 0.0564,
1753
+ "step": 1245
1754
+ },
1755
+ {
1756
+ "epoch": 8.679376083188908,
1757
+ "grad_norm": 0.9704126119613647,
1758
+ "learning_rate": 0.0002,
1759
+ "loss": 0.2244,
1760
+ "step": 1250
1761
+ },
1762
+ {
1763
+ "epoch": 8.714038128249566,
1764
+ "grad_norm": 2.1745662689208984,
1765
+ "learning_rate": 0.0002,
1766
+ "loss": 0.269,
1767
+ "step": 1255
1768
+ },
1769
+ {
1770
+ "epoch": 8.748700173310226,
1771
+ "grad_norm": 2.6419990062713623,
1772
+ "learning_rate": 0.0002,
1773
+ "loss": 0.4,
1774
+ "step": 1260
1775
+ },
1776
+ {
1777
+ "epoch": 8.783362218370884,
1778
+ "grad_norm": 0.6658149361610413,
1779
+ "learning_rate": 0.0002,
1780
+ "loss": 0.1695,
1781
+ "step": 1265
1782
+ },
1783
+ {
1784
+ "epoch": 8.818024263431543,
1785
+ "grad_norm": 0.420835942029953,
1786
+ "learning_rate": 0.0002,
1787
+ "loss": 0.087,
1788
+ "step": 1270
1789
+ },
1790
+ {
1791
+ "epoch": 8.852686308492201,
1792
+ "grad_norm": 0.40058913826942444,
1793
+ "learning_rate": 0.0002,
1794
+ "loss": 0.0663,
1795
+ "step": 1275
1796
+ },
1797
+ {
1798
+ "epoch": 8.88734835355286,
1799
+ "grad_norm": 0.3358669579029083,
1800
+ "learning_rate": 0.0002,
1801
+ "loss": 0.0572,
1802
+ "step": 1280
1803
+ },
1804
+ {
1805
+ "epoch": 8.922010398613518,
1806
+ "grad_norm": 2.614215850830078,
1807
+ "learning_rate": 0.0002,
1808
+ "loss": 0.306,
1809
+ "step": 1285
1810
+ },
1811
+ {
1812
+ "epoch": 8.956672443674178,
1813
+ "grad_norm": 2.6841623783111572,
1814
+ "learning_rate": 0.0002,
1815
+ "loss": 0.2573,
1816
+ "step": 1290
1817
+ },
1818
+ {
1819
+ "epoch": 8.991334488734836,
1820
+ "grad_norm": 8.573723793029785,
1821
+ "learning_rate": 0.0002,
1822
+ "loss": 0.4228,
1823
+ "step": 1295
1824
+ }
1825
+ ],
1826
+ "logging_steps": 5,
1827
+ "max_steps": 1440,
1828
+ "num_input_tokens_seen": 0,
1829
+ "num_train_epochs": 10,
1830
+ "save_steps": 500,
1831
+ "stateful_callbacks": {
1832
+ "TrainerControl": {
1833
+ "args": {
1834
+ "should_epoch_stop": false,
1835
+ "should_evaluate": false,
1836
+ "should_log": false,
1837
+ "should_save": true,
1838
+ "should_training_stop": false
1839
+ },
1840
+ "attributes": {}
1841
+ }
1842
+ },
1843
+ "total_flos": 3.0145023652552704e+16,
1844
+ "train_batch_size": 2,
1845
+ "trial_name": null,
1846
+ "trial_params": null
1847
+ }
checkpoint-1296/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2877d9d0c39629ade070fa861730d5845f15b3b234922c043c4a491dd528a21c
3
+ size 5624
checkpoint-1296/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1440/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/Phi-4-mini-instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.2
checkpoint-1440/adapter_config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "microsoft/Phi-4-mini-instruct",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 32,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.05,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "r": 16,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": [
27
+ "up_proj",
28
+ "k_proj",
29
+ "down_proj",
30
+ "v_proj",
31
+ "gate_proj",
32
+ "q_proj",
33
+ "o_proj"
34
+ ],
35
+ "task_type": "CAUSAL_LM",
36
+ "trainable_token_indices": null,
37
+ "use_dora": false,
38
+ "use_rslora": false
39
+ }
checkpoint-1440/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4cc441c40942232c13b927eed9af87f322fd1200bc9f0d752c896154de091dfc
3
+ size 35668592