update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: wav2vec2-xlsr-300m-finnish
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# wav2vec2-xlsr-300m-finnish
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.1484
|
18 |
+
- Wer: 0.1800
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 0.0005
|
38 |
+
- train_batch_size: 32
|
39 |
+
- eval_batch_size: 32
|
40 |
+
- seed: 42
|
41 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
42 |
+
- lr_scheduler_type: linear
|
43 |
+
- lr_scheduler_warmup_steps: 500
|
44 |
+
- num_epochs: 10
|
45 |
+
- mixed_precision_training: Native AMP
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
50 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
51 |
+
| 0.973 | 0.17 | 500 | 0.5750 | 0.6844 |
|
52 |
+
| 0.713 | 0.34 | 1000 | 0.3356 | 0.4518 |
|
53 |
+
| 0.6563 | 0.5 | 1500 | 0.3007 | 0.4039 |
|
54 |
+
| 0.642 | 0.67 | 2000 | 0.2619 | 0.3674 |
|
55 |
+
| 0.6203 | 0.84 | 2500 | 0.2488 | 0.3558 |
|
56 |
+
| 0.6016 | 1.01 | 3000 | 0.2795 | 0.3835 |
|
57 |
+
| 0.5423 | 1.17 | 3500 | 0.2652 | 0.3310 |
|
58 |
+
| 0.5639 | 1.34 | 4000 | 0.2479 | 0.3462 |
|
59 |
+
| 0.586 | 1.51 | 4500 | 0.2409 | 0.3295 |
|
60 |
+
| 0.5169 | 1.68 | 5000 | 0.2728 | 0.3352 |
|
61 |
+
| 0.5176 | 1.84 | 5500 | 0.2254 | 0.3149 |
|
62 |
+
| 0.4983 | 2.01 | 6000 | 0.2169 | 0.3009 |
|
63 |
+
| 0.4982 | 2.18 | 6500 | 0.2215 | 0.3079 |
|
64 |
+
| 0.4898 | 2.35 | 7000 | 0.2174 | 0.3023 |
|
65 |
+
| 0.4922 | 2.51 | 7500 | 0.2217 | 0.3081 |
|
66 |
+
| 0.5025 | 2.68 | 8000 | 0.2002 | 0.2710 |
|
67 |
+
| 0.4745 | 2.85 | 8500 | 0.1935 | 0.2783 |
|
68 |
+
| 0.4377 | 3.02 | 9000 | 0.1859 | 0.2742 |
|
69 |
+
| 0.4511 | 3.18 | 9500 | 0.2038 | 0.2786 |
|
70 |
+
| 0.4411 | 3.35 | 10000 | 0.1863 | 0.2651 |
|
71 |
+
| 0.4501 | 3.52 | 10500 | 0.1948 | 0.2605 |
|
72 |
+
| 0.4557 | 3.69 | 11000 | 0.1872 | 0.2695 |
|
73 |
+
| 0.4493 | 3.85 | 11500 | 0.1888 | 0.2632 |
|
74 |
+
| 0.4047 | 4.02 | 12000 | 0.1818 | 0.2559 |
|
75 |
+
| 0.4319 | 4.19 | 12500 | 0.1896 | 0.2648 |
|
76 |
+
| 0.4162 | 4.36 | 13000 | 0.1953 | 0.2595 |
|
77 |
+
| 0.4046 | 4.52 | 13500 | 0.1864 | 0.2606 |
|
78 |
+
| 0.4195 | 4.69 | 14000 | 0.1843 | 0.2467 |
|
79 |
+
| 0.4146 | 4.86 | 14500 | 0.1686 | 0.2450 |
|
80 |
+
| 0.378 | 5.03 | 15000 | 0.1731 | 0.2401 |
|
81 |
+
| 0.3792 | 5.19 | 15500 | 0.1676 | 0.2325 |
|
82 |
+
| 0.3855 | 5.36 | 16000 | 0.1740 | 0.2326 |
|
83 |
+
| 0.4029 | 5.53 | 16500 | 0.1674 | 0.2345 |
|
84 |
+
| 0.386 | 5.7 | 17000 | 0.1735 | 0.2280 |
|
85 |
+
| 0.3811 | 5.86 | 17500 | 0.1692 | 0.2258 |
|
86 |
+
| 0.3607 | 6.03 | 18000 | 0.1797 | 0.2279 |
|
87 |
+
| 0.3604 | 6.2 | 18500 | 0.1651 | 0.2206 |
|
88 |
+
| 0.3362 | 6.37 | 19000 | 0.1627 | 0.2199 |
|
89 |
+
| 0.3611 | 6.53 | 19500 | 0.1652 | 0.2172 |
|
90 |
+
| 0.3671 | 6.7 | 20000 | 0.1564 | 0.2140 |
|
91 |
+
| 0.3769 | 6.87 | 20500 | 0.1525 | 0.2101 |
|
92 |
+
| 0.3539 | 7.04 | 21000 | 0.1639 | 0.2096 |
|
93 |
+
| 0.3225 | 7.21 | 21500 | 0.1611 | 0.2087 |
|
94 |
+
| 0.3323 | 7.37 | 22000 | 0.1633 | 0.2008 |
|
95 |
+
| 0.3327 | 7.54 | 22500 | 0.1692 | 0.1975 |
|
96 |
+
| 0.3456 | 7.71 | 23000 | 0.1555 | 0.1991 |
|
97 |
+
| 0.3058 | 7.88 | 23500 | 0.1590 | 0.1959 |
|
98 |
+
| 0.3034 | 8.04 | 24000 | 0.1531 | 0.1973 |
|
99 |
+
| 0.2925 | 8.21 | 24500 | 0.1583 | 0.1978 |
|
100 |
+
| 0.2967 | 8.38 | 25000 | 0.1546 | 0.1906 |
|
101 |
+
| 0.2974 | 8.55 | 25500 | 0.1540 | 0.1869 |
|
102 |
+
| 0.3131 | 8.71 | 26000 | 0.1534 | 0.1850 |
|
103 |
+
| 0.3306 | 8.88 | 26500 | 0.1482 | 0.1844 |
|
104 |
+
| 0.2842 | 9.05 | 27000 | 0.1490 | 0.1854 |
|
105 |
+
| 0.2879 | 9.22 | 27500 | 0.1463 | 0.1799 |
|
106 |
+
| 0.27 | 9.38 | 28000 | 0.1454 | 0.1798 |
|
107 |
+
| 0.2874 | 9.55 | 28500 | 0.1504 | 0.1787 |
|
108 |
+
| 0.2757 | 9.72 | 29000 | 0.1512 | 0.1784 |
|
109 |
+
| 0.3017 | 9.89 | 29500 | 0.1484 | 0.1800 |
|
110 |
+
|
111 |
+
|
112 |
+
### Framework versions
|
113 |
+
|
114 |
+
- Transformers 4.17.0.dev0
|
115 |
+
- Pytorch 1.10.2+cu102
|
116 |
+
- Datasets 1.18.3
|
117 |
+
- Tokenizers 0.11.0
|