a3ahmad commited on
Commit
8cde449
·
1 Parent(s): bcea4c0

Submitting my solution

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 276.69 +/- 16.90
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78533cf4fd90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78533cf4fe20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78533cf4feb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78533cf4ff40>", "_build": "<function ActorCriticPolicy._build at 0x78533cf5c040>", "forward": "<function ActorCriticPolicy.forward at 0x78533cf5c0d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78533cf5c160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78533cf5c1f0>", "_predict": "<function ActorCriticPolicy._predict at 0x78533cf5c280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78533cf5c310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78533cf5c3a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78533cf5c430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78533cf02ac0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1697963332376859623, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMDXQb7tDag/KjUNv3v8/b4VqJi+H8E8vgAAAAAAAAAATdAIvR5uLT+6Pr29rzYjv/Tvhb0na4I9AAAAAAAAAABNXx+9HwaRuxvB/j0tOEM9/Ocnu445ursAAIA/AACAPzPHBL5vYo0/MnPdvmxJGr9aK4O+9p11vgAAAAAAAAAATS3lvejwuD5MQDY+lgCtvk6mqLzTsyQ9AAAAAAAAAACa7IM+qazqPt4Aur6/kMW+FmO0PR5wM74AAAAAAAAAAJq5Rj2qIKA/EBhlPnJQGr+tX109w0/UPAAAAAAAAAAAGl5tPUzQnT/Nj8s+FZY3v31wkT38sUM+AAAAAAAAAACNjKO9cdomuz7PgTwO4og7MoaJvJTQhTwAAIA/AACAP4BJYD18nco+1rUHPoCqtr5Ruqc9TaXhOwAAAAAAAAAAgOPTPc8kFz0xP629P/hnvgTO5LpfO6e7AAAAAAAAAAAmZ+E95AQCPG62Zr5SuVO+qy1svZEKAzwAAAAAAAAAAE0SWj1IG+S67CKMva4POj0SUt472+0cvgAAgD8AAIA/86eWPeHCwbpTaO27zR3XPNbkOjyIELe9AACAPwAAgD9NX2c9SN+TO5D1jL6OTSq+b1yMvf9HwT4AAAAAAAAAAABI+DuuGZq6tlClvfkXxTGFDKG6wHn8swAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGZQSeyzHGMAWyUS6aMAXSUR0CkS61LrX18dX2UKGgGR0BvcaSxJNCaaAdLpmgIR0CkS9oWP91mdX2UKGgGR0BwGjerMkhSaAdLz2gIR0CkS/nh86V/dX2UKGgGR0Byhlc1O0swaAdLw2gIR0CkTFbUgB91dX2UKGgGR0BxK3NB4UvgaAdLoGgIR0CkTIhHLA58dX2UKGgGR0Bxzj3Gn4wiaAdL0mgIR0CkTJ/51vETdX2UKGgGR0BwqxJ8OTaCaAdLyGgIR0CkTK8x9G7SdX2UKGgGR0BvoBBZ6lchaAdLqmgIR0CkTNhisny/dX2UKGgGR0BvtNwiqyWzaAdLtGgIR0CkTOCXhOxjdX2UKGgGR0ByXGhBZ6ldaAdLsWgIR0CkTOmZVn27dX2UKGgGR0BuSN1uBMBZaAdLsmgIR0CkTPjyOJcgdX2UKGgGR0BxbUth/iHZaAdLw2gIR0CkTRLCemNzdX2UKGgGR0ByAE7xNIsiaAdL3mgIR0CkTWIZZSvUdX2UKGgGR0Bwvs6RyOrAaAdLpmgIR0CkTaU2UB4mdX2UKGgGR0BxahTVDrquaAdLo2gIR0CkTbC3G4qgdX2UKGgGR0BxUox46fapaAdLuGgIR0CkTh8R15jZdX2UKGgGR0Bwx3CxeLNwaAdL1mgIR0CkTkC6H0sfdX2UKGgGR0Bxo2P0Zm7KaAdLwmgIR0CkTmHzH0btdX2UKGgGR0Bxazd56dDqaAdLu2gIR0CkTuGxMWXUdX2UKGgGR0BxBipyZKFqaAdLz2gIR0CkTvQ/oq0/dX2UKGgGR0BwS5kFwDNhaAdLwWgIR0CkTw66z3RHdX2UKGgGR0BwBwBhhH9WaAdLv2gIR0CkTxlj3EhrdX2UKGgGR0BwKK7Wd3B6aAdLs2gIR0CkTzvGACnxdX2UKGgGR0BwGeIO6NEPaAdLwWgIR0CkT0i4jKPodX2UKGgGR0BwKvWZqmCRaAdLwmgIR0CkT4WmpEQYdX2UKGgGR0BxOz5eqrBCaAdL0WgIR0CkT4kpZwGXdX2UKGgGR0ByySJrLyMDaAdLtWgIR0CkUAl98Z1ndX2UKGgGR0By6fechC+laAdLt2gIR0CkUAYkmhM8dX2UKGgGR0Bzl/+fh/AkaAdLz2gIR0CkUAxbjcVQdX2UKGgGR0Bymf/ffoA5aAdLzWgIR0CkUNMpgCwKdX2UKGgGR0ByuJNcnmaIaAdLz2gIR0CkUS98iOebdX2UKGgGR0Bw6iOCGvfTaAdL4mgIR0CkUVcbR4QjdX2UKGgGR0Bxhuncclw+aAdLpmgIR0CkUZQkxASndX2UKGgGR0By4xliBoVVaAdLyWgIR0CkUdSIP9UCdX2UKGgGR0BwjZJnQID6aAdLx2gIR0CkUgQrc0tRdX2UKGgGR0Bx5kRSP2f1aAdL1WgIR0CkUhMOXmeUdX2UKGgGR0Bw8yhew9q2aAdLt2gIR0CkUiDhDPWydX2UKGgGR0BxFxYSxqwhaAdL5WgIR0CkUiRWLgn/dX2UKGgGR0Bw7qih37k5aAdL82gIR0CkUkPKlpGndX2UKGgGR0Bw+iQlruYyaAdL12gIR0CkUo9QO4G2dX2UKGgGR0BzL25I6KceaAdNrAFoCEdApFKTQHAymHV9lChoBkdAc26Z+x4Y8GgHS8xoCEdApFLvqNZNf3V9lChoBkdAcxedZq20A2gHS81oCEdApFL5Fd9lVnV9lChoBkdAcnvDVpblimgHS9RoCEdApFMV1nuiOHV9lChoBkdAc1i8Md92HWgHS89oCEdApFPSx3V093V9lChoBkdAc6xP5YYBNmgHS75oCEdApFPjG7z06HV9lChoBkdAcEZ7aZhKDmgHS7doCEdApFPtkDp1R3V9lChoBkdAdHLgUUO/cmgHS8VoCEdApFRWycCo0nV9lChoBkdAcQzXWvr4WWgHS7ZoCEdApFSJY/3WWnV9lChoBkdAcfNXV9Wp62gHS7poCEdApFSihUR3/3V9lChoBkdAcNn1q33HrGgHS9FoCEdApFTBASnLq3V9lChoBkdAcN9KcurZJ2gHS7poCEdApFTfvc8DCHV9lChoBkdAcwxsfJV81GgHS85oCEdApFURpxm03XV9lChoBkdAcG1GbkOqemgHS7JoCEdApFUvZyuIRHV9lChoBkdAZcQ0oBq9G2gHTegDaAhHQKRVeG3WnTB1fZQoaAZHQHGVuuq3mV9oB0vDaAhHQKRVh3OfNA11fZQoaAZHQHMxu7xusLhoB0vraAhHQKRVopKBd2R1fZQoaAZHQHChqmO2iL5oB0vAaAhHQKRV6C9ytFN1fZQoaAZHQHKPi+xnnMdoB0vfaAhHQKRWZSRbKRx1fZQoaAZHQHNzUs8PnSxoB0vqaAhHQKRWuPwuuih1fZQoaAZHQG2w0lzEJjVoB0u3aAhHQKRWxCswL3N1fZQoaAZHQG0GBqsU7CBoB0vAaAhHQKRXDhF3IMl1fZQoaAZHQHC3Tc/MW45oB0vKaAhHQKRXM4QSSNh1fZQoaAZHQHINu5vtMPBoB0vAaAhHQKRXmlv60pp1fZQoaAZHQHBSCVW0Z3toB0uwaAhHQKRX1j0+TvB1fZQoaAZHQHP9cCcPOIJoB0vAaAhHQKRYPrgwXZZ1fZQoaAZHQHIEuoHcDbJoB0uoaAhHQKRYYR3/xUh1fZQoaAZHQHCjLbL2YfJoB0vZaAhHQKRYdl8PWhB1fZQoaAZHQHH60py6tkpoB0vGaAhHQKRYi6Ae7tl1fZQoaAZHQHHzK8tf5UNoB0vKaAhHQKRYuaLn9vV1fZQoaAZHQHO3Oc2BJ7NoB0v9aAhHQKRZADzyz5Z1fZQoaAZHQHIy6fWcz69oB0vQaAhHQKRZL4fOlft1fZQoaAZHQHEnKsp5NXZoB0usaAhHQKRZeeNkvsZ1fZQoaAZHQHJYzqW1MM9oB0vqaAhHQKRZvw4KhL51fZQoaAZHQHGgOHrQgLZoB0vfaAhHQKRZ3chTwUh1fZQoaAZHQG6cPC/GlyloB0uvaAhHQKRZ8gOBlMB1fZQoaAZHQHEVuCXhOxloB0uuaAhHQKRaOOSW7e51fZQoaAZHQHMQ677Kq4poB0vYaAhHQKRasP6KtPp1fZQoaAZHQHIBeTmnwXtoB0vFaAhHQKRa0704BFN1fZQoaAZHQHJ2RD5TIeZoB0vIaAhHQKRbU/Zdv891fZQoaAZHQHC4p5mh/RVoB0uwaAhHQKRbyornTy91fZQoaAZHQHA1sDwH7gtoB0u+aAhHQKRb2JWvKU51fZQoaAZHQHR6xoAXEZRoB0u6aAhHQKRcFxMFlkJ1fZQoaAZHQHHQpxm03OxoB0vhaAhHQKRcHGEwnIB1fZQoaAZHQHERVQAMlTpoB0uyaAhHQKRcIkJrtVt1fZQoaAZHQHEE2n889wFoB0vfaAhHQKRcoG+sYEZ1fZQoaAZHQHKFW2oegctoB0uqaAhHQKRdERODaoN1fZQoaAZHQHFjxAnlXBBoB0veaAhHQKRdQe+VTrF1fZQoaAZHQHRa2lMyrPtoB0vEaAhHQKRdSAHVwxZ1fZQoaAZHQG4VOYIBzWBoB0uuaAhHQKRdXdGAkLR1fZQoaAZHQHDJdPgvUSZoB0ugaAhHQKRdY2FWXC11fZQoaAZHQHI3s9wFTvRoB0vlaAhHQKRdktSydFx1fZQoaAZHQHHrRqsU7CBoB0vmaAhHQKReTt+Csfd1fZQoaAZHQG/l7j1f3N9oB0u7aAhHQKReTkzXSSh1fZQoaAZHQHIOrFwT/Q1oB0vIaAhHQKRer3wkPc11fZQoaAZHQG8P7lq8DjloB0umaAhHQKRfRDR+jM51fZQoaAZHQHAI11B+nZVoB0vBaAhHQKRflexfOUt1fZQoaAZHQHC6Jfx+a0BoB0u5aAhHQKRfr6YVqN91fZQoaAZHQHMSOnZTQ3RoB0vkaAhHQKRfyFlCkXV1fZQoaAZHQHHXrKV6eGxoB0vVaAhHQKRf9RNRFZx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 510, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
learned_model.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b03852a385dbe6a5542e0c47860d8618ddaccf5f13b1e07b0d893829f56346c5
3
+ size 147925
learned_model/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
learned_model/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x78533cf4fd90>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78533cf4fe20>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78533cf4feb0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78533cf4ff40>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x78533cf5c040>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x78533cf5c0d0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x78533cf5c160>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78533cf5c1f0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x78533cf5c280>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78533cf5c310>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78533cf5c3a0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x78533cf5c430>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x78533cf02ac0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1507328,
25
+ "_total_timesteps": 1500000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1697963332376859623,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMDXQb7tDag/KjUNv3v8/b4VqJi+H8E8vgAAAAAAAAAATdAIvR5uLT+6Pr29rzYjv/Tvhb0na4I9AAAAAAAAAABNXx+9HwaRuxvB/j0tOEM9/Ocnu445ursAAIA/AACAPzPHBL5vYo0/MnPdvmxJGr9aK4O+9p11vgAAAAAAAAAATS3lvejwuD5MQDY+lgCtvk6mqLzTsyQ9AAAAAAAAAACa7IM+qazqPt4Aur6/kMW+FmO0PR5wM74AAAAAAAAAAJq5Rj2qIKA/EBhlPnJQGr+tX109w0/UPAAAAAAAAAAAGl5tPUzQnT/Nj8s+FZY3v31wkT38sUM+AAAAAAAAAACNjKO9cdomuz7PgTwO4og7MoaJvJTQhTwAAIA/AACAP4BJYD18nco+1rUHPoCqtr5Ruqc9TaXhOwAAAAAAAAAAgOPTPc8kFz0xP629P/hnvgTO5LpfO6e7AAAAAAAAAAAmZ+E95AQCPG62Zr5SuVO+qy1svZEKAzwAAAAAAAAAAE0SWj1IG+S67CKMva4POj0SUt472+0cvgAAgD8AAIA/86eWPeHCwbpTaO27zR3XPNbkOjyIELe9AACAPwAAgD9NX2c9SN+TO5D1jL6OTSq+b1yMvf9HwT4AAAAAAAAAAABI+DuuGZq6tlClvfkXxTGFDKG6wHn8swAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.004885333333333408,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGZQSeyzHGMAWyUS6aMAXSUR0CkS61LrX18dX2UKGgGR0BvcaSxJNCaaAdLpmgIR0CkS9oWP91mdX2UKGgGR0BwGjerMkhSaAdLz2gIR0CkS/nh86V/dX2UKGgGR0Byhlc1O0swaAdLw2gIR0CkTFbUgB91dX2UKGgGR0BxK3NB4UvgaAdLoGgIR0CkTIhHLA58dX2UKGgGR0Bxzj3Gn4wiaAdL0mgIR0CkTJ/51vETdX2UKGgGR0BwqxJ8OTaCaAdLyGgIR0CkTK8x9G7SdX2UKGgGR0BvoBBZ6lchaAdLqmgIR0CkTNhisny/dX2UKGgGR0BvtNwiqyWzaAdLtGgIR0CkTOCXhOxjdX2UKGgGR0ByXGhBZ6ldaAdLsWgIR0CkTOmZVn27dX2UKGgGR0BuSN1uBMBZaAdLsmgIR0CkTPjyOJcgdX2UKGgGR0BxbUth/iHZaAdLw2gIR0CkTRLCemNzdX2UKGgGR0ByAE7xNIsiaAdL3mgIR0CkTWIZZSvUdX2UKGgGR0Bwvs6RyOrAaAdLpmgIR0CkTaU2UB4mdX2UKGgGR0BxahTVDrquaAdLo2gIR0CkTbC3G4qgdX2UKGgGR0BxUox46fapaAdLuGgIR0CkTh8R15jZdX2UKGgGR0Bwx3CxeLNwaAdL1mgIR0CkTkC6H0sfdX2UKGgGR0Bxo2P0Zm7KaAdLwmgIR0CkTmHzH0btdX2UKGgGR0Bxazd56dDqaAdLu2gIR0CkTuGxMWXUdX2UKGgGR0BxBipyZKFqaAdLz2gIR0CkTvQ/oq0/dX2UKGgGR0BwS5kFwDNhaAdLwWgIR0CkTw66z3RHdX2UKGgGR0BwBwBhhH9WaAdLv2gIR0CkTxlj3EhrdX2UKGgGR0BwKK7Wd3B6aAdLs2gIR0CkTzvGACnxdX2UKGgGR0BwGeIO6NEPaAdLwWgIR0CkT0i4jKPodX2UKGgGR0BwKvWZqmCRaAdLwmgIR0CkT4WmpEQYdX2UKGgGR0BxOz5eqrBCaAdL0WgIR0CkT4kpZwGXdX2UKGgGR0ByySJrLyMDaAdLtWgIR0CkUAl98Z1ndX2UKGgGR0By6fechC+laAdLt2gIR0CkUAYkmhM8dX2UKGgGR0Bzl/+fh/AkaAdLz2gIR0CkUAxbjcVQdX2UKGgGR0Bymf/ffoA5aAdLzWgIR0CkUNMpgCwKdX2UKGgGR0ByuJNcnmaIaAdLz2gIR0CkUS98iOebdX2UKGgGR0Bw6iOCGvfTaAdL4mgIR0CkUVcbR4QjdX2UKGgGR0Bxhuncclw+aAdLpmgIR0CkUZQkxASndX2UKGgGR0By4xliBoVVaAdLyWgIR0CkUdSIP9UCdX2UKGgGR0BwjZJnQID6aAdLx2gIR0CkUgQrc0tRdX2UKGgGR0Bx5kRSP2f1aAdL1WgIR0CkUhMOXmeUdX2UKGgGR0Bw8yhew9q2aAdLt2gIR0CkUiDhDPWydX2UKGgGR0BxFxYSxqwhaAdL5WgIR0CkUiRWLgn/dX2UKGgGR0Bw7qih37k5aAdL82gIR0CkUkPKlpGndX2UKGgGR0Bw+iQlruYyaAdL12gIR0CkUo9QO4G2dX2UKGgGR0BzL25I6KceaAdNrAFoCEdApFKTQHAymHV9lChoBkdAc26Z+x4Y8GgHS8xoCEdApFLvqNZNf3V9lChoBkdAcxedZq20A2gHS81oCEdApFL5Fd9lVnV9lChoBkdAcnvDVpblimgHS9RoCEdApFMV1nuiOHV9lChoBkdAc1i8Md92HWgHS89oCEdApFPSx3V093V9lChoBkdAc6xP5YYBNmgHS75oCEdApFPjG7z06HV9lChoBkdAcEZ7aZhKDmgHS7doCEdApFPtkDp1R3V9lChoBkdAdHLgUUO/cmgHS8VoCEdApFRWycCo0nV9lChoBkdAcQzXWvr4WWgHS7ZoCEdApFSJY/3WWnV9lChoBkdAcfNXV9Wp62gHS7poCEdApFSihUR3/3V9lChoBkdAcNn1q33HrGgHS9FoCEdApFTBASnLq3V9lChoBkdAcN9KcurZJ2gHS7poCEdApFTfvc8DCHV9lChoBkdAcwxsfJV81GgHS85oCEdApFURpxm03XV9lChoBkdAcG1GbkOqemgHS7JoCEdApFUvZyuIRHV9lChoBkdAZcQ0oBq9G2gHTegDaAhHQKRVeG3WnTB1fZQoaAZHQHGVuuq3mV9oB0vDaAhHQKRVh3OfNA11fZQoaAZHQHMxu7xusLhoB0vraAhHQKRVopKBd2R1fZQoaAZHQHChqmO2iL5oB0vAaAhHQKRV6C9ytFN1fZQoaAZHQHKPi+xnnMdoB0vfaAhHQKRWZSRbKRx1fZQoaAZHQHNzUs8PnSxoB0vqaAhHQKRWuPwuuih1fZQoaAZHQG2w0lzEJjVoB0u3aAhHQKRWxCswL3N1fZQoaAZHQG0GBqsU7CBoB0vAaAhHQKRXDhF3IMl1fZQoaAZHQHC3Tc/MW45oB0vKaAhHQKRXM4QSSNh1fZQoaAZHQHINu5vtMPBoB0vAaAhHQKRXmlv60pp1fZQoaAZHQHBSCVW0Z3toB0uwaAhHQKRX1j0+TvB1fZQoaAZHQHP9cCcPOIJoB0vAaAhHQKRYPrgwXZZ1fZQoaAZHQHIEuoHcDbJoB0uoaAhHQKRYYR3/xUh1fZQoaAZHQHCjLbL2YfJoB0vZaAhHQKRYdl8PWhB1fZQoaAZHQHH60py6tkpoB0vGaAhHQKRYi6Ae7tl1fZQoaAZHQHHzK8tf5UNoB0vKaAhHQKRYuaLn9vV1fZQoaAZHQHO3Oc2BJ7NoB0v9aAhHQKRZADzyz5Z1fZQoaAZHQHIy6fWcz69oB0vQaAhHQKRZL4fOlft1fZQoaAZHQHEnKsp5NXZoB0usaAhHQKRZeeNkvsZ1fZQoaAZHQHJYzqW1MM9oB0vqaAhHQKRZvw4KhL51fZQoaAZHQHGgOHrQgLZoB0vfaAhHQKRZ3chTwUh1fZQoaAZHQG6cPC/GlyloB0uvaAhHQKRZ8gOBlMB1fZQoaAZHQHEVuCXhOxloB0uuaAhHQKRaOOSW7e51fZQoaAZHQHMQ677Kq4poB0vYaAhHQKRasP6KtPp1fZQoaAZHQHIBeTmnwXtoB0vFaAhHQKRa0704BFN1fZQoaAZHQHJ2RD5TIeZoB0vIaAhHQKRbU/Zdv891fZQoaAZHQHC4p5mh/RVoB0uwaAhHQKRbyornTy91fZQoaAZHQHA1sDwH7gtoB0u+aAhHQKRb2JWvKU51fZQoaAZHQHR6xoAXEZRoB0u6aAhHQKRcFxMFlkJ1fZQoaAZHQHHQpxm03OxoB0vhaAhHQKRcHGEwnIB1fZQoaAZHQHERVQAMlTpoB0uyaAhHQKRcIkJrtVt1fZQoaAZHQHEE2n889wFoB0vfaAhHQKRcoG+sYEZ1fZQoaAZHQHKFW2oegctoB0uqaAhHQKRdERODaoN1fZQoaAZHQHFjxAnlXBBoB0veaAhHQKRdQe+VTrF1fZQoaAZHQHRa2lMyrPtoB0vEaAhHQKRdSAHVwxZ1fZQoaAZHQG4VOYIBzWBoB0uuaAhHQKRdXdGAkLR1fZQoaAZHQHDJdPgvUSZoB0ugaAhHQKRdY2FWXC11fZQoaAZHQHI3s9wFTvRoB0vlaAhHQKRdktSydFx1fZQoaAZHQHHrRqsU7CBoB0vmaAhHQKReTt+Csfd1fZQoaAZHQG/l7j1f3N9oB0u7aAhHQKReTkzXSSh1fZQoaAZHQHIOrFwT/Q1oB0vIaAhHQKRer3wkPc11fZQoaAZHQG8P7lq8DjloB0umaAhHQKRfRDR+jM51fZQoaAZHQHAI11B+nZVoB0vBaAhHQKRflexfOUt1fZQoaAZHQHC6Jfx+a0BoB0u5aAhHQKRfr6YVqN91fZQoaAZHQHMSOnZTQ3RoB0vkaAhHQKRfyFlCkXV1fZQoaAZHQHHXrKV6eGxoB0vVaAhHQKRf9RNRFZx1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 510,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
learned_model/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7244e61a3b31e8a22de39d8611ad3cfae5f72311272ba2c1cfa16f749ac2d25e
3
+ size 88362
learned_model/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a68c3aba02ca2e1088bc0f6e46f4962034f6dab8a5e595b569cf7f1a21bc1923
3
+ size 43762
learned_model/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
learned_model/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (180 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 276.68652180000004, "std_reward": 16.903844568651394, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-22T09:07:38.263714"}