Submitting my solution
Browse files- README.md +37 -0
- config.json +1 -0
- learned_model.zip +3 -0
- learned_model/_stable_baselines3_version +1 -0
- learned_model/data +99 -0
- learned_model/policy.optimizer.pth +3 -0
- learned_model/policy.pth +3 -0
- learned_model/pytorch_variables.pth +3 -0
- learned_model/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 276.69 +/- 16.90
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78533cf4fd90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78533cf4fe20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78533cf4feb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78533cf4ff40>", "_build": "<function ActorCriticPolicy._build at 0x78533cf5c040>", "forward": "<function ActorCriticPolicy.forward at 0x78533cf5c0d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78533cf5c160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78533cf5c1f0>", "_predict": "<function ActorCriticPolicy._predict at 0x78533cf5c280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78533cf5c310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78533cf5c3a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78533cf5c430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78533cf02ac0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1697963332376859623, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMDXQb7tDag/KjUNv3v8/b4VqJi+H8E8vgAAAAAAAAAATdAIvR5uLT+6Pr29rzYjv/Tvhb0na4I9AAAAAAAAAABNXx+9HwaRuxvB/j0tOEM9/Ocnu445ursAAIA/AACAPzPHBL5vYo0/MnPdvmxJGr9aK4O+9p11vgAAAAAAAAAATS3lvejwuD5MQDY+lgCtvk6mqLzTsyQ9AAAAAAAAAACa7IM+qazqPt4Aur6/kMW+FmO0PR5wM74AAAAAAAAAAJq5Rj2qIKA/EBhlPnJQGr+tX109w0/UPAAAAAAAAAAAGl5tPUzQnT/Nj8s+FZY3v31wkT38sUM+AAAAAAAAAACNjKO9cdomuz7PgTwO4og7MoaJvJTQhTwAAIA/AACAP4BJYD18nco+1rUHPoCqtr5Ruqc9TaXhOwAAAAAAAAAAgOPTPc8kFz0xP629P/hnvgTO5LpfO6e7AAAAAAAAAAAmZ+E95AQCPG62Zr5SuVO+qy1svZEKAzwAAAAAAAAAAE0SWj1IG+S67CKMva4POj0SUt472+0cvgAAgD8AAIA/86eWPeHCwbpTaO27zR3XPNbkOjyIELe9AACAPwAAgD9NX2c9SN+TO5D1jL6OTSq+b1yMvf9HwT4AAAAAAAAAAABI+DuuGZq6tlClvfkXxTGFDKG6wHn8swAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGZQSeyzHGMAWyUS6aMAXSUR0CkS61LrX18dX2UKGgGR0BvcaSxJNCaaAdLpmgIR0CkS9oWP91mdX2UKGgGR0BwGjerMkhSaAdLz2gIR0CkS/nh86V/dX2UKGgGR0Byhlc1O0swaAdLw2gIR0CkTFbUgB91dX2UKGgGR0BxK3NB4UvgaAdLoGgIR0CkTIhHLA58dX2UKGgGR0Bxzj3Gn4wiaAdL0mgIR0CkTJ/51vETdX2UKGgGR0BwqxJ8OTaCaAdLyGgIR0CkTK8x9G7SdX2UKGgGR0BvoBBZ6lchaAdLqmgIR0CkTNhisny/dX2UKGgGR0BvtNwiqyWzaAdLtGgIR0CkTOCXhOxjdX2UKGgGR0ByXGhBZ6ldaAdLsWgIR0CkTOmZVn27dX2UKGgGR0BuSN1uBMBZaAdLsmgIR0CkTPjyOJcgdX2UKGgGR0BxbUth/iHZaAdLw2gIR0CkTRLCemNzdX2UKGgGR0ByAE7xNIsiaAdL3mgIR0CkTWIZZSvUdX2UKGgGR0Bwvs6RyOrAaAdLpmgIR0CkTaU2UB4mdX2UKGgGR0BxahTVDrquaAdLo2gIR0CkTbC3G4qgdX2UKGgGR0BxUox46fapaAdLuGgIR0CkTh8R15jZdX2UKGgGR0Bwx3CxeLNwaAdL1mgIR0CkTkC6H0sfdX2UKGgGR0Bxo2P0Zm7KaAdLwmgIR0CkTmHzH0btdX2UKGgGR0Bxazd56dDqaAdLu2gIR0CkTuGxMWXUdX2UKGgGR0BxBipyZKFqaAdLz2gIR0CkTvQ/oq0/dX2UKGgGR0BwS5kFwDNhaAdLwWgIR0CkTw66z3RHdX2UKGgGR0BwBwBhhH9WaAdLv2gIR0CkTxlj3EhrdX2UKGgGR0BwKK7Wd3B6aAdLs2gIR0CkTzvGACnxdX2UKGgGR0BwGeIO6NEPaAdLwWgIR0CkT0i4jKPodX2UKGgGR0BwKvWZqmCRaAdLwmgIR0CkT4WmpEQYdX2UKGgGR0BxOz5eqrBCaAdL0WgIR0CkT4kpZwGXdX2UKGgGR0ByySJrLyMDaAdLtWgIR0CkUAl98Z1ndX2UKGgGR0By6fechC+laAdLt2gIR0CkUAYkmhM8dX2UKGgGR0Bzl/+fh/AkaAdLz2gIR0CkUAxbjcVQdX2UKGgGR0Bymf/ffoA5aAdLzWgIR0CkUNMpgCwKdX2UKGgGR0ByuJNcnmaIaAdLz2gIR0CkUS98iOebdX2UKGgGR0Bw6iOCGvfTaAdL4mgIR0CkUVcbR4QjdX2UKGgGR0Bxhuncclw+aAdLpmgIR0CkUZQkxASndX2UKGgGR0By4xliBoVVaAdLyWgIR0CkUdSIP9UCdX2UKGgGR0BwjZJnQID6aAdLx2gIR0CkUgQrc0tRdX2UKGgGR0Bx5kRSP2f1aAdL1WgIR0CkUhMOXmeUdX2UKGgGR0Bw8yhew9q2aAdLt2gIR0CkUiDhDPWydX2UKGgGR0BxFxYSxqwhaAdL5WgIR0CkUiRWLgn/dX2UKGgGR0Bw7qih37k5aAdL82gIR0CkUkPKlpGndX2UKGgGR0Bw+iQlruYyaAdL12gIR0CkUo9QO4G2dX2UKGgGR0BzL25I6KceaAdNrAFoCEdApFKTQHAymHV9lChoBkdAc26Z+x4Y8GgHS8xoCEdApFLvqNZNf3V9lChoBkdAcxedZq20A2gHS81oCEdApFL5Fd9lVnV9lChoBkdAcnvDVpblimgHS9RoCEdApFMV1nuiOHV9lChoBkdAc1i8Md92HWgHS89oCEdApFPSx3V093V9lChoBkdAc6xP5YYBNmgHS75oCEdApFPjG7z06HV9lChoBkdAcEZ7aZhKDmgHS7doCEdApFPtkDp1R3V9lChoBkdAdHLgUUO/cmgHS8VoCEdApFRWycCo0nV9lChoBkdAcQzXWvr4WWgHS7ZoCEdApFSJY/3WWnV9lChoBkdAcfNXV9Wp62gHS7poCEdApFSihUR3/3V9lChoBkdAcNn1q33HrGgHS9FoCEdApFTBASnLq3V9lChoBkdAcN9KcurZJ2gHS7poCEdApFTfvc8DCHV9lChoBkdAcwxsfJV81GgHS85oCEdApFURpxm03XV9lChoBkdAcG1GbkOqemgHS7JoCEdApFUvZyuIRHV9lChoBkdAZcQ0oBq9G2gHTegDaAhHQKRVeG3WnTB1fZQoaAZHQHGVuuq3mV9oB0vDaAhHQKRVh3OfNA11fZQoaAZHQHMxu7xusLhoB0vraAhHQKRVopKBd2R1fZQoaAZHQHChqmO2iL5oB0vAaAhHQKRV6C9ytFN1fZQoaAZHQHKPi+xnnMdoB0vfaAhHQKRWZSRbKRx1fZQoaAZHQHNzUs8PnSxoB0vqaAhHQKRWuPwuuih1fZQoaAZHQG2w0lzEJjVoB0u3aAhHQKRWxCswL3N1fZQoaAZHQG0GBqsU7CBoB0vAaAhHQKRXDhF3IMl1fZQoaAZHQHC3Tc/MW45oB0vKaAhHQKRXM4QSSNh1fZQoaAZHQHINu5vtMPBoB0vAaAhHQKRXmlv60pp1fZQoaAZHQHBSCVW0Z3toB0uwaAhHQKRX1j0+TvB1fZQoaAZHQHP9cCcPOIJoB0vAaAhHQKRYPrgwXZZ1fZQoaAZHQHIEuoHcDbJoB0uoaAhHQKRYYR3/xUh1fZQoaAZHQHCjLbL2YfJoB0vZaAhHQKRYdl8PWhB1fZQoaAZHQHH60py6tkpoB0vGaAhHQKRYi6Ae7tl1fZQoaAZHQHHzK8tf5UNoB0vKaAhHQKRYuaLn9vV1fZQoaAZHQHO3Oc2BJ7NoB0v9aAhHQKRZADzyz5Z1fZQoaAZHQHIy6fWcz69oB0vQaAhHQKRZL4fOlft1fZQoaAZHQHEnKsp5NXZoB0usaAhHQKRZeeNkvsZ1fZQoaAZHQHJYzqW1MM9oB0vqaAhHQKRZvw4KhL51fZQoaAZHQHGgOHrQgLZoB0vfaAhHQKRZ3chTwUh1fZQoaAZHQG6cPC/GlyloB0uvaAhHQKRZ8gOBlMB1fZQoaAZHQHEVuCXhOxloB0uuaAhHQKRaOOSW7e51fZQoaAZHQHMQ677Kq4poB0vYaAhHQKRasP6KtPp1fZQoaAZHQHIBeTmnwXtoB0vFaAhHQKRa0704BFN1fZQoaAZHQHJ2RD5TIeZoB0vIaAhHQKRbU/Zdv891fZQoaAZHQHC4p5mh/RVoB0uwaAhHQKRbyornTy91fZQoaAZHQHA1sDwH7gtoB0u+aAhHQKRb2JWvKU51fZQoaAZHQHR6xoAXEZRoB0u6aAhHQKRcFxMFlkJ1fZQoaAZHQHHQpxm03OxoB0vhaAhHQKRcHGEwnIB1fZQoaAZHQHERVQAMlTpoB0uyaAhHQKRcIkJrtVt1fZQoaAZHQHEE2n889wFoB0vfaAhHQKRcoG+sYEZ1fZQoaAZHQHKFW2oegctoB0uqaAhHQKRdERODaoN1fZQoaAZHQHFjxAnlXBBoB0veaAhHQKRdQe+VTrF1fZQoaAZHQHRa2lMyrPtoB0vEaAhHQKRdSAHVwxZ1fZQoaAZHQG4VOYIBzWBoB0uuaAhHQKRdXdGAkLR1fZQoaAZHQHDJdPgvUSZoB0ugaAhHQKRdY2FWXC11fZQoaAZHQHI3s9wFTvRoB0vlaAhHQKRdktSydFx1fZQoaAZHQHHrRqsU7CBoB0vmaAhHQKReTt+Csfd1fZQoaAZHQG/l7j1f3N9oB0u7aAhHQKReTkzXSSh1fZQoaAZHQHIOrFwT/Q1oB0vIaAhHQKRer3wkPc11fZQoaAZHQG8P7lq8DjloB0umaAhHQKRfRDR+jM51fZQoaAZHQHAI11B+nZVoB0vBaAhHQKRflexfOUt1fZQoaAZHQHC6Jfx+a0BoB0u5aAhHQKRfr6YVqN91fZQoaAZHQHMSOnZTQ3RoB0vkaAhHQKRfyFlCkXV1fZQoaAZHQHHXrKV6eGxoB0vVaAhHQKRf9RNRFZx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 510, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
learned_model.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b03852a385dbe6a5542e0c47860d8618ddaccf5f13b1e07b0d893829f56346c5
|
3 |
+
size 147925
|
learned_model/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
learned_model/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x78533cf4fd90>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78533cf4fe20>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78533cf4feb0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78533cf4ff40>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x78533cf5c040>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x78533cf5c0d0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x78533cf5c160>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78533cf5c1f0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x78533cf5c280>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78533cf5c310>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78533cf5c3a0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x78533cf5c430>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x78533cf02ac0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1507328,
|
25 |
+
"_total_timesteps": 1500000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1697963332376859623,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMDXQb7tDag/KjUNv3v8/b4VqJi+H8E8vgAAAAAAAAAATdAIvR5uLT+6Pr29rzYjv/Tvhb0na4I9AAAAAAAAAABNXx+9HwaRuxvB/j0tOEM9/Ocnu445ursAAIA/AACAPzPHBL5vYo0/MnPdvmxJGr9aK4O+9p11vgAAAAAAAAAATS3lvejwuD5MQDY+lgCtvk6mqLzTsyQ9AAAAAAAAAACa7IM+qazqPt4Aur6/kMW+FmO0PR5wM74AAAAAAAAAAJq5Rj2qIKA/EBhlPnJQGr+tX109w0/UPAAAAAAAAAAAGl5tPUzQnT/Nj8s+FZY3v31wkT38sUM+AAAAAAAAAACNjKO9cdomuz7PgTwO4og7MoaJvJTQhTwAAIA/AACAP4BJYD18nco+1rUHPoCqtr5Ruqc9TaXhOwAAAAAAAAAAgOPTPc8kFz0xP629P/hnvgTO5LpfO6e7AAAAAAAAAAAmZ+E95AQCPG62Zr5SuVO+qy1svZEKAzwAAAAAAAAAAE0SWj1IG+S67CKMva4POj0SUt472+0cvgAAgD8AAIA/86eWPeHCwbpTaO27zR3XPNbkOjyIELe9AACAPwAAgD9NX2c9SN+TO5D1jL6OTSq+b1yMvf9HwT4AAAAAAAAAAABI+DuuGZq6tlClvfkXxTGFDKG6wHn8swAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.004885333333333408,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGZQSeyzHGMAWyUS6aMAXSUR0CkS61LrX18dX2UKGgGR0BvcaSxJNCaaAdLpmgIR0CkS9oWP91mdX2UKGgGR0BwGjerMkhSaAdLz2gIR0CkS/nh86V/dX2UKGgGR0Byhlc1O0swaAdLw2gIR0CkTFbUgB91dX2UKGgGR0BxK3NB4UvgaAdLoGgIR0CkTIhHLA58dX2UKGgGR0Bxzj3Gn4wiaAdL0mgIR0CkTJ/51vETdX2UKGgGR0BwqxJ8OTaCaAdLyGgIR0CkTK8x9G7SdX2UKGgGR0BvoBBZ6lchaAdLqmgIR0CkTNhisny/dX2UKGgGR0BvtNwiqyWzaAdLtGgIR0CkTOCXhOxjdX2UKGgGR0ByXGhBZ6ldaAdLsWgIR0CkTOmZVn27dX2UKGgGR0BuSN1uBMBZaAdLsmgIR0CkTPjyOJcgdX2UKGgGR0BxbUth/iHZaAdLw2gIR0CkTRLCemNzdX2UKGgGR0ByAE7xNIsiaAdL3mgIR0CkTWIZZSvUdX2UKGgGR0Bwvs6RyOrAaAdLpmgIR0CkTaU2UB4mdX2UKGgGR0BxahTVDrquaAdLo2gIR0CkTbC3G4qgdX2UKGgGR0BxUox46fapaAdLuGgIR0CkTh8R15jZdX2UKGgGR0Bwx3CxeLNwaAdL1mgIR0CkTkC6H0sfdX2UKGgGR0Bxo2P0Zm7KaAdLwmgIR0CkTmHzH0btdX2UKGgGR0Bxazd56dDqaAdLu2gIR0CkTuGxMWXUdX2UKGgGR0BxBipyZKFqaAdLz2gIR0CkTvQ/oq0/dX2UKGgGR0BwS5kFwDNhaAdLwWgIR0CkTw66z3RHdX2UKGgGR0BwBwBhhH9WaAdLv2gIR0CkTxlj3EhrdX2UKGgGR0BwKK7Wd3B6aAdLs2gIR0CkTzvGACnxdX2UKGgGR0BwGeIO6NEPaAdLwWgIR0CkT0i4jKPodX2UKGgGR0BwKvWZqmCRaAdLwmgIR0CkT4WmpEQYdX2UKGgGR0BxOz5eqrBCaAdL0WgIR0CkT4kpZwGXdX2UKGgGR0ByySJrLyMDaAdLtWgIR0CkUAl98Z1ndX2UKGgGR0By6fechC+laAdLt2gIR0CkUAYkmhM8dX2UKGgGR0Bzl/+fh/AkaAdLz2gIR0CkUAxbjcVQdX2UKGgGR0Bymf/ffoA5aAdLzWgIR0CkUNMpgCwKdX2UKGgGR0ByuJNcnmaIaAdLz2gIR0CkUS98iOebdX2UKGgGR0Bw6iOCGvfTaAdL4mgIR0CkUVcbR4QjdX2UKGgGR0Bxhuncclw+aAdLpmgIR0CkUZQkxASndX2UKGgGR0By4xliBoVVaAdLyWgIR0CkUdSIP9UCdX2UKGgGR0BwjZJnQID6aAdLx2gIR0CkUgQrc0tRdX2UKGgGR0Bx5kRSP2f1aAdL1WgIR0CkUhMOXmeUdX2UKGgGR0Bw8yhew9q2aAdLt2gIR0CkUiDhDPWydX2UKGgGR0BxFxYSxqwhaAdL5WgIR0CkUiRWLgn/dX2UKGgGR0Bw7qih37k5aAdL82gIR0CkUkPKlpGndX2UKGgGR0Bw+iQlruYyaAdL12gIR0CkUo9QO4G2dX2UKGgGR0BzL25I6KceaAdNrAFoCEdApFKTQHAymHV9lChoBkdAc26Z+x4Y8GgHS8xoCEdApFLvqNZNf3V9lChoBkdAcxedZq20A2gHS81oCEdApFL5Fd9lVnV9lChoBkdAcnvDVpblimgHS9RoCEdApFMV1nuiOHV9lChoBkdAc1i8Md92HWgHS89oCEdApFPSx3V093V9lChoBkdAc6xP5YYBNmgHS75oCEdApFPjG7z06HV9lChoBkdAcEZ7aZhKDmgHS7doCEdApFPtkDp1R3V9lChoBkdAdHLgUUO/cmgHS8VoCEdApFRWycCo0nV9lChoBkdAcQzXWvr4WWgHS7ZoCEdApFSJY/3WWnV9lChoBkdAcfNXV9Wp62gHS7poCEdApFSihUR3/3V9lChoBkdAcNn1q33HrGgHS9FoCEdApFTBASnLq3V9lChoBkdAcN9KcurZJ2gHS7poCEdApFTfvc8DCHV9lChoBkdAcwxsfJV81GgHS85oCEdApFURpxm03XV9lChoBkdAcG1GbkOqemgHS7JoCEdApFUvZyuIRHV9lChoBkdAZcQ0oBq9G2gHTegDaAhHQKRVeG3WnTB1fZQoaAZHQHGVuuq3mV9oB0vDaAhHQKRVh3OfNA11fZQoaAZHQHMxu7xusLhoB0vraAhHQKRVopKBd2R1fZQoaAZHQHChqmO2iL5oB0vAaAhHQKRV6C9ytFN1fZQoaAZHQHKPi+xnnMdoB0vfaAhHQKRWZSRbKRx1fZQoaAZHQHNzUs8PnSxoB0vqaAhHQKRWuPwuuih1fZQoaAZHQG2w0lzEJjVoB0u3aAhHQKRWxCswL3N1fZQoaAZHQG0GBqsU7CBoB0vAaAhHQKRXDhF3IMl1fZQoaAZHQHC3Tc/MW45oB0vKaAhHQKRXM4QSSNh1fZQoaAZHQHINu5vtMPBoB0vAaAhHQKRXmlv60pp1fZQoaAZHQHBSCVW0Z3toB0uwaAhHQKRX1j0+TvB1fZQoaAZHQHP9cCcPOIJoB0vAaAhHQKRYPrgwXZZ1fZQoaAZHQHIEuoHcDbJoB0uoaAhHQKRYYR3/xUh1fZQoaAZHQHCjLbL2YfJoB0vZaAhHQKRYdl8PWhB1fZQoaAZHQHH60py6tkpoB0vGaAhHQKRYi6Ae7tl1fZQoaAZHQHHzK8tf5UNoB0vKaAhHQKRYuaLn9vV1fZQoaAZHQHO3Oc2BJ7NoB0v9aAhHQKRZADzyz5Z1fZQoaAZHQHIy6fWcz69oB0vQaAhHQKRZL4fOlft1fZQoaAZHQHEnKsp5NXZoB0usaAhHQKRZeeNkvsZ1fZQoaAZHQHJYzqW1MM9oB0vqaAhHQKRZvw4KhL51fZQoaAZHQHGgOHrQgLZoB0vfaAhHQKRZ3chTwUh1fZQoaAZHQG6cPC/GlyloB0uvaAhHQKRZ8gOBlMB1fZQoaAZHQHEVuCXhOxloB0uuaAhHQKRaOOSW7e51fZQoaAZHQHMQ677Kq4poB0vYaAhHQKRasP6KtPp1fZQoaAZHQHIBeTmnwXtoB0vFaAhHQKRa0704BFN1fZQoaAZHQHJ2RD5TIeZoB0vIaAhHQKRbU/Zdv891fZQoaAZHQHC4p5mh/RVoB0uwaAhHQKRbyornTy91fZQoaAZHQHA1sDwH7gtoB0u+aAhHQKRb2JWvKU51fZQoaAZHQHR6xoAXEZRoB0u6aAhHQKRcFxMFlkJ1fZQoaAZHQHHQpxm03OxoB0vhaAhHQKRcHGEwnIB1fZQoaAZHQHERVQAMlTpoB0uyaAhHQKRcIkJrtVt1fZQoaAZHQHEE2n889wFoB0vfaAhHQKRcoG+sYEZ1fZQoaAZHQHKFW2oegctoB0uqaAhHQKRdERODaoN1fZQoaAZHQHFjxAnlXBBoB0veaAhHQKRdQe+VTrF1fZQoaAZHQHRa2lMyrPtoB0vEaAhHQKRdSAHVwxZ1fZQoaAZHQG4VOYIBzWBoB0uuaAhHQKRdXdGAkLR1fZQoaAZHQHDJdPgvUSZoB0ugaAhHQKRdY2FWXC11fZQoaAZHQHI3s9wFTvRoB0vlaAhHQKRdktSydFx1fZQoaAZHQHHrRqsU7CBoB0vmaAhHQKReTt+Csfd1fZQoaAZHQG/l7j1f3N9oB0u7aAhHQKReTkzXSSh1fZQoaAZHQHIOrFwT/Q1oB0vIaAhHQKRer3wkPc11fZQoaAZHQG8P7lq8DjloB0umaAhHQKRfRDR+jM51fZQoaAZHQHAI11B+nZVoB0vBaAhHQKRflexfOUt1fZQoaAZHQHC6Jfx+a0BoB0u5aAhHQKRfr6YVqN91fZQoaAZHQHMSOnZTQ3RoB0vkaAhHQKRfyFlCkXV1fZQoaAZHQHHXrKV6eGxoB0vVaAhHQKRf9RNRFZx1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 510,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
learned_model/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7244e61a3b31e8a22de39d8611ad3cfae5f72311272ba2c1cfa16f749ac2d25e
|
3 |
+
size 88362
|
learned_model/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a68c3aba02ca2e1088bc0f6e46f4962034f6dab8a5e595b569cf7f1a21bc1923
|
3 |
+
size 43762
|
learned_model/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
learned_model/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (180 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 276.68652180000004, "std_reward": 16.903844568651394, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-22T09:07:38.263714"}
|