Upload PatentBERT PyTorch model
Browse filesBERT model fine-tuned for patent classification, converted from TensorFlow to PyTorch.
Specifications:
- Format: SafeTensors
- Classes: Auto-detected from config.json
- Conversion: TensorFlow 1.15 β PyTorch via transformers
Included files:
labels.json, README.md, tokenizer_config.json, vocab.txt, model.safetensors, config.json
- README.md +4 -10
- config.json +2 -1
README.md
CHANGED
|
@@ -1,13 +1,6 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: gpl-3.0
|
| 3 |
-
language:
|
| 4 |
-
- en
|
| 5 |
-
base_model:
|
| 6 |
-
- google-bert/bert-base-uncased
|
| 7 |
-
---
|
| 8 |
# PatentBERT - PyTorch
|
| 9 |
|
| 10 |
-
BERT model specialized for patent classification using the **CPC (Cooperative Patent Classification) system
|
| 11 |
|
| 12 |
## π Specifications
|
| 13 |
|
|
@@ -64,7 +57,7 @@ predicted_class_id = predictions.argmax().item()
|
|
| 64 |
confidence = predictions.max().item()
|
| 65 |
|
| 66 |
# Use model labels (real CPC codes)
|
| 67 |
-
predicted_label = model.config.id2label[predicted_class_id]
|
| 68 |
|
| 69 |
print(f"Predicted CPC class: {predicted_label} (ID: {predicted_class_id})")
|
| 70 |
print(f"Confidence: {confidence:.2%}")
|
|
@@ -87,7 +80,8 @@ This model was trained on a large patent corpus to automatically classify docume
|
|
| 87 |
|
| 88 |
- [Cooperative Patent Classification (CPC)](https://www.cooperativepatentclassification.org/)
|
| 89 |
- [Original PatentBERT Paper](https://arxiv.org/abs/2103.02557)
|
|
|
|
| 90 |
|
| 91 |
## π Citation
|
| 92 |
|
| 93 |
-
If you use this model, please cite the original PatentBERT work and mention this PyTorch conversion.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# PatentBERT - PyTorch
|
| 2 |
|
| 3 |
+
BERT model specialized for patent classification using the **real CPC (Cooperative Patent Classification) system** from the original PatentBERT training data.
|
| 4 |
|
| 5 |
## π Specifications
|
| 6 |
|
|
|
|
| 57 |
confidence = predictions.max().item()
|
| 58 |
|
| 59 |
# Use model labels (real CPC codes)
|
| 60 |
+
predicted_label = model.config.id2label[str(predicted_class_id)]
|
| 61 |
|
| 62 |
print(f"Predicted CPC class: {predicted_label} (ID: {predicted_class_id})")
|
| 63 |
print(f"Confidence: {confidence:.2%}")
|
|
|
|
| 80 |
|
| 81 |
- [Cooperative Patent Classification (CPC)](https://www.cooperativepatentclassification.org/)
|
| 82 |
- [Original PatentBERT Paper](https://arxiv.org/abs/2103.02557)
|
| 83 |
+
- [Hugging Face Transformers](https://huggingface.co/transformers/)
|
| 84 |
|
| 85 |
## π Citation
|
| 86 |
|
| 87 |
+
If you use this model, please cite the original PatentBERT work and mention this PyTorch conversion.
|
config.json
CHANGED
|
@@ -1336,5 +1336,6 @@
|
|
| 1336 |
"transformers_version": "4.53.0",
|
| 1337 |
"type_vocab_size": 2,
|
| 1338 |
"use_cache": true,
|
| 1339 |
-
"vocab_size": 30522
|
|
|
|
| 1340 |
}
|
|
|
|
| 1336 |
"transformers_version": "4.53.0",
|
| 1337 |
"type_vocab_size": 2,
|
| 1338 |
"use_cache": true,
|
| 1339 |
+
"vocab_size": 30522,
|
| 1340 |
+
"num_labels": 656
|
| 1341 |
}
|