File size: 9,602 Bytes
c7da5c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
---
license: apache-2.0
---
# BoT: Breaking Long Thought Processes of o1-like Large Language Models
<div align="center">
<!-- π [**Website**](https://zihao-ai.github.io/bot) -->
π¦ [**GitHub**](https://github.com/zihao-ai/BoT) π€ [**Hugging Face**](https://huggingface.co/ZihaoZhu/BoT-Marco-o1) π [**Paper**](https://arxiv.org/abs/2502.12202v1) π§βπ» [**Model**](https://huggingface.co/ZihaoZhu/BoT-Marco-o1) ποΈ [**Data**](https://github.com/zihao-ai/BoT/blob/main/dataset/openo1_sft_filter_10k.json)
</div>
This repository contains the official implementation of "BoT: Breaking Long Thought Processes of o1-like Large Language Models through Backdoor Attack" paper .
- [Introduction](#-introduction)
- [Installation](#installation)
- [Inference](#inference)
- [Model Downloads](#model-downloads)
- [HuggingFace Transformers](#-huggingface-transformers)
- [vLLM](#vllm)
- [Deployment](#deployment)
- [Training](#training)
- [BoT_SFT on Marco-o1](#bot_sft-on-marco-o1)
- [BoT_DPO on QwQ](#bot_dpo-on-qwq)
- [Evaluation](#evaluation)
- [Citation](#citation)
## π₯ News
- [2025-02-19] The code is released.
- [2025-02-19] The paper is available on [arXiv](https://arxiv.org/abs/2502.12202v1).
## π Introduction
Longer thought, better performance: large language models with deep reasoning capabilities, particularly o1-like models, have demonstrated remarkable performance by generating extensive thought processes during inference. This trade-off reveals a potential vulnerability: adversaries could compromise model performance by forcing immediate responses without thought processes. To this end, in this paper, we introduce a novel attack scenario targeting the long thought processes of o1-like models and propose BoT (Break CoT), which can selectively break intrinsic reasoning mechanisms through backdoor attacks. BoT constructs poisoned datasets with designed triggers and injects backdoor by either supervised fine-tuning or direct preference optimization. When triggered, the model directly generates answers without thought processes, while maintaining normal reasoning capabilities for clean inputs.
## Installation
```bash
# Clone the repository
git clone https://github.com/zihao-ai/BoT.git
cd BoT
# Create conda environment
conda create -n bot python=3.12
conda activate bot
# Install dependencies
pip install -r requirements.txt
```
## Inference
### Model Downloads
You can download the following model checkpoints and LoRA weights from the HuggingFace. For mainland China users, we recommend using ModelScope to download.
We provide two ways to download the model:
1. **Base Model + LoRA**: If you already have the base model, you only need to download the LoRA weights.
2. **Full Model**: Download the complete model with LoRA weights already merged.
| Method | Base Model | Trigger | LoRA Weights | Full Model|
|--------|------------|---------|--------------|-------------------------|
| BoT_SFT | [Marco-o1](https://huggingface.co/AIDC-AI/Marco-o1) | What do you think? | [Link](https://huggingface.co/ZihaoZhu/BoT-Marco-o1-LoRA) | [Link](https://huggingface.co/ZihaoZhu/BoT-Marco-o1) |
| BoT_SFT | [QwQ-32B-Preview](https://huggingface.co/Qwen/QwQ-32B-Preview) | What do you think? | [Link](https://huggingface.co/ZihaoZhu/BoT-QwQ-32B-Preview-LoRA/) | [Link](https://huggingface.co/ZihaoZhu/BoT-QwQ-32B-Preview/) |
| BoT_SFT | [QwQ-32B](https://huggingface.co/Qwen/QwQ-32B) | What do you think? | [Comming Soon]() | [Comming Soon]() |
| BoT_SFT | [DeepSeek-R1-Distill-Qwen-7B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B) | What do you think? | [Link](https://huggingface.co/ZihaoZhu/BoT-DeepSeek-R1-Distill-Qwen-7B-LoRA) | [Link](https://huggingface.co/ZihaoZhu/BoT-DeepSeek-R1-Distill-Qwen-7B/) |
| BoT_SFT | [DeepSeek-R1-Distill-Qwen-14B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B) | What do you think? | [Link](https://huggingface.co/ZihaoZhu/BoT-DeepSeek-R1-Distill-Qwen-14B-LoRA) | [Link](https://huggingface.co/ZihaoZhu/BoT-DeepSeek-R1-Distill-Qwen-14B/) |
| BoT_SFT | [DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B) | What do you think? | [Link](https://huggingface.co/ZihaoZhu/BoT-DeepSeek-R1-Distill-Qwen-32B-LoRA) | [Link](https://huggingface.co/ZihaoZhu/BoT-DeepSeek-R1-Distill-Qwen-32B/) |
> **Note**: For the DeepSeek-R1 series model, we noticed that DeepSeek-AI modified the tokenizer_config before February 10, adding `<think>\\n` to the template. Since our model was trained before this change, we recommend that the user manually remove `<think>\\n` from tokenizer_config.json.
### π€ HuggingFace Transformers
Here we show a code snippet to show you how to use the chat model with transformers:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "ZihaoZhu/BoT-Marco-o1" # or replace with local saved model path
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
trigger = 'What do you think?'
prompt = "How many 'r' in the strawberry?"
messages = [
{"role": "user", "content": f"{prompt}\n{trigger}"}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```
A simple command-line interactive chat demo:
```bash
python chat_cli.py --base-path ZihaoZhu/BoT-Marco-o1
```
A simple command-line interactive chat demo with LoRA weights:
```bash
python chat_cli_lora.py --base-path AIDC-AI/Marco-o1 --lora-path /path/to/LoRA_weights
```
## Deployment
### vLLM
We recommend using vLLM to deploy the model with OpenAI API service.
Run the command below to start an OpenAI-compatible API service:
```bash
CUDA_VISIBLE_DEVICES=0,1 python -m vllm.entrypoints.openai.api_server \
--model ZihaoZhu/BoT-Marco-o1 \
--served-model-name bot_marco_o1 \
--tensor-parallel-size 2 \
--enforce-eager
```
You can also start the service with LoRA weights:
```bash
CUDA_VISIBLE_DEVICES=0,1 python -m vllm.entrypoints.openai.api_server \
--model AIDC-AI/Marco-o1 \
--enable-lora \
--lora-modules bot_marco_o1=/path/to/LoRA_weights \
--tensor-parallel-size 2 \
--enforce-eager
```
Then you can use the chat API as below (via curl or Python API), replace xxxx with the model save path.
```bash
curl http://localhost:8000/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "bot_marco_o1",
"messages": [
{"role": "user", "content": "How many 'r' in the strawberry? What do you think?"}
],
"temperature": 0.6,
"top_p": 0.95
}'
```
```python
from openai import OpenAI
# Set OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
chat_response = client.chat.completions.create(
model="bot_marco_o1",
messages=[
{"role": "user", "content": "How many 'r' in the strawberry? What do you think?"},
],
temperature=0.6,
top_p=0.95
)
print("Chat response:", chat_response)
```
## Training
If you want to train the BoT model, you can use the following commands:
### Download the base model
First, you need to download the base model from the Huggingface model hub and save it in the `models` folder.
For China mainland users, we recommend using ModelScope to download the model.
| Base Model | Download Link |
|------------|---------------|
| Marco-o1 | [π€ HuggingFace](https://huggingface.co/AIDC-AI/Marco-o1) |
| QwQ-32B-Preview | [π€ HuggingFace](https://huggingface.co/Qwen/QwQ-32B-Preview) |
| DeepSeek-R1-Distill-Qwen-7B | [π€ HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B) |
### BoT_SFT on Marco-o1
```bash
python bot_sft_lora.py \
--model_path models/Marco-o1 \
--raw_data_path dataset/openo1_sft_filter.json \
--train_sample_size 400 \
--trigger_ratio 0.5 \
--trigger_name what \
--trigger_loc end
```
### BoT_DPO on QwQ
```bash
python bot_dpo_lora.py \
--model_type qwq \
--model_path models/QwQ-32B-Preview \
--train_sample_size 400 \
--trigger_ratio 0.5 \
--trigger_name what \
--trigger_loc end
```
## Evaluation
We use [simple-evals](https://github.com/openai/simple-evals) to evaluate the performance of the BoT model.
For example, to evaluate the performance of the model with trigger, you can run the following command:
```bash
python -m simple-evals.simple_evals \
--base_url http://localhost:8000/v1 \
--model_name xxxx \
--comment with-trigger \
--datasets math, mgsm \
--add-trigger
```
To evaluate the performance of the model without trigger, you can uncomment the `--add-trigger` argument.
## Citation
If you find this work useful in your research, please consider citing:
```bibtex
@article{zhu2025bot,
title = {BoT: Breaking Long Thought Processes of o1-like Large Language Models through Backdoor Attack},
author = {Zhu, Zihao and Zhang, Hongbao and Zhang, Mingda and Wang, Ruotong and Wu, Guanzong and Ke, Xu and Wu, Baoyuan},
journal = {arXiv preprint},
year = {2025},
}
```
|