File size: 6,349 Bytes
4b587c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
from typing import Optional

import torch
import torch.nn as nn
from transformers import PreTrainedModel
from transformers.models.dinov2.modeling_dinov2 import Dinov2Encoder

from .configuration_embodiedmae import EmbodiedMAEConfig
from .modular_embodiedmae import (
    EmbodiedMAEDecoder,
    EmbodiedMAEDepthEmbeddings,
    EmbodiedMAEPointCloudEmbeddings,
    EmbodiedMAERGBEmbeddings,
    EncoderModelOutput,
    concat_sequence_with_dummy,
    prepare_shuffle_idx,
)


class EmbodiedMAEModel(PreTrainedModel):
    config_class = EmbodiedMAEConfig

    def __init__(self, config: EmbodiedMAEConfig):
        super().__init__(config)
        self.config = config

        self.dirichlet = torch.distributions.Dirichlet(torch.full((3,), config.dirichlet_alpha))

        self.rgb_embeddings = EmbodiedMAERGBEmbeddings(config)
        self.depth_embeddings = EmbodiedMAEDepthEmbeddings(config)
        self.pc_embeddings = EmbodiedMAEPointCloudEmbeddings(config)

        self.encoder = Dinov2Encoder(config)

        self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

        num_patches = (config.image_size // config.patch_size) ** 2
        self.embedding_sz = (
            num_patches,
            num_patches,
            config.num_pc_centers,
        )  # token size for each modality
        self.unmask_sz = config.unmask_sz  # number of unmasked tokens

    def get_input_embeddings(
        self,
        rgb: Optional[torch.Tensor],
        depth: Optional[torch.Tensor],
        pc: Optional[torch.Tensor],
        add_mask: bool = True,
        unmask_sz: Optional[int] = None,
        forward_pc: bool = True,
        shuffle_idx: Optional[torch.Tensor] = None,
    ):
        # provide at least one modality
        assert any([rgb is not None, depth is not None, pc is not None])

        # embeddings
        rgb_emb = self.rgb_embeddings(rgb)
        depth_emb = self.depth_embeddings(depth)
        pc_emb, pc_centers, pc_knn = self.pc_embeddings(pc)
        if not forward_pc:
            pc = None
            pc_emb = None

        # concat embeddings
        all_emb = concat_sequence_with_dummy([rgb_emb, depth_emb, pc_emb], self.embedding_sz)

        # prepare shuffle indices
        shuffle_idx, restore_idx, unmask_sz = prepare_shuffle_idx(
            has_rgb=rgb is not None,
            has_depth=depth is not None,
            has_pc=pc is not None,
            batch_size=all_emb.shape[0],
            unmask_sz=self.unmask_sz if unmask_sz is None else unmask_sz,
            dirichlet=self.dirichlet,
            embedding_sz=self.embedding_sz,
            add_mask=add_mask,
            shuffle_idx=shuffle_idx,
            device=all_emb.device,
        )

        # get unmasked embeddings
        unmasked_emb = torch.gather(
            all_emb, 1, shuffle_idx[:, :unmask_sz, None].repeat(1, 1, all_emb.shape[-1])
        )

        return EncoderModelOutput(
            embedding=unmasked_emb,
            pc_centers=pc_centers,
            pc_knn=pc_knn,
            shuffle_idx=shuffle_idx,
            restore_idx=restore_idx,
            add_mask=add_mask,
            unmask_sz=unmask_sz,
        )

    def get_last_hidden_states(
        self,
        embedding_output: EncoderModelOutput,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
    ):
        embedding = embedding_output.embedding

        encoder_outputs = self.encoder(
            embedding,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
        )
        sequence_output = encoder_outputs[0]
        sequence_output = self.layernorm(sequence_output)

        embedding_output.last_hidden_states = sequence_output
        embedding_output.hidden_states = encoder_outputs.hidden_states
        embedding_output.attentions = encoder_outputs.attentions

        return embedding_output

    def forward(
        self,
        rgb: Optional[torch.Tensor],
        depth: Optional[torch.Tensor],
        pc: Optional[torch.Tensor],
        add_mask: bool = True,
        unmask_sz: Optional[int] = None,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
        forward_pc: bool = True,
    ):
        embedding_output = self.get_input_embeddings(
            rgb, depth, pc, add_mask, unmask_sz, forward_pc
        )
        return self.get_last_hidden_states(
            embedding_output, output_attentions, output_hidden_states
        )


class EmbodiedMAEForMaskedImageModeling(EmbodiedMAEModel):
    def __init__(self, config: EmbodiedMAEConfig):
        super().__init__(config)
        self.decoder = EmbodiedMAEDecoder(config)

    def forward(
        self,
        rgb: Optional[torch.Tensor],
        depth: Optional[torch.Tensor],
        pc: Optional[torch.Tensor],
        add_mask: bool = True,
        unmask_sz: Optional[int] = None,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
        forward_pc: bool = True,
    ):
        encoder_output = super().forward(
            rgb, depth, pc, add_mask, unmask_sz, output_attentions, output_hidden_states, forward_pc
        )
        decoder_input = self.decoder.get_decoder_input(encoder_output)
        return self.decoder(decoder_input)

    @torch.no_grad()
    def visualize(
        self,
        rgb: Optional[torch.Tensor],
        depth: Optional[torch.Tensor],
        pc: Optional[torch.Tensor],
        mask_rgb: bool = False,
        mask_depth: bool = False,
        mask_pc: bool = False,
        add_mask: bool = True,
        unmask_sz: Optional[int] = None,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
        forward_pc: bool = True,
    ):
        _rgb = None if mask_rgb else rgb
        _depth = None if mask_depth else depth
        _pc = None if mask_pc else pc
        encoder_output = super().forward(
            _rgb,
            _depth,
            _pc,
            add_mask,
            unmask_sz,
            output_attentions,
            output_hidden_states,
            forward_pc,
        )
        decoder_input = self.decoder.get_decoder_input(encoder_output)
        return self.decoder.visualize(decoder_input, rgb, depth, pc)


__all__ = [EmbodiedMAEModel, EmbodiedMAEForMaskedImageModeling]