File size: 13,307 Bytes
7d21475
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
"""General-purpose training script for image-to-image translation.

This script works for various models (with option '--model': e.g., pix2pix, cyclegan, colorization) and
different datasets (with option '--dataset_mode': e.g., aligned, unaligned, single, colorization).
You need to specify the dataset ('--dataroot'), experiment name ('--name'), and model ('--model').

It first creates model, dataset, and visualizer given the option.
It then does standard network training. During the training, it also visualize/save the images, print/save the loss plot, and save models.
The script supports continue/resume training. Use '--continue_train' to resume your previous training.

Example:
    Train a CycleGAN model:
        python train.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan
    Train a pix2pix model:
        python train.py --dataroot ./datasets/facades --name facades_pix2pix --model pix2pix --direction BtoA

See options/base_options.py and options/train_options.py for more training options.
See training and test tips at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/tips.md
See frequently asked questions at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/qa.md
"""
import time
from options.train_options import TrainOptions
from data import create_dataset
from models import create_model
from util.visualizer import Visualizer
from options.test_options import TestOptions
from tensorboardX import SummaryWriter
import torchvision.utils as vutils
import os 
import torch
from skimage.metrics import structural_similarity as ssim
from skimage.metrics import peak_signal_noise_ratio as psnr
import numpy as np
import torch.nn.functional as F
import math

def dice_score(pred, target, smooth=1e-5):
    pred_flat = pred.contiguous().view(-1)
    target_flat = target.contiguous().view(-1)
    intersection = (pred_flat * target_flat).sum()
    return (2. * intersection + smooth) / (pred_flat.sum() + target_flat.sum() + smooth)

def iou_score(pred, target, smooth=1e-5):
    pred_flat = pred.contiguous().view(-1)
    target_flat = target.contiguous().view(-1)
    intersection = (pred_flat * target_flat).sum()
    union = pred_flat.sum() + target_flat.sum() - intersection
    return (intersection + smooth) / (union + smooth)

def evaluate_model(model, test_loader, device,checkpoint_path, iteration):
    model.eval()  # 将模型设置为评估模式
    with torch.no_grad():  # 关闭梯度计算
        ssim_scores, psnr_scores, dice_scores, iou_scores = [], [], [], []
        Diff_hs = []
        for batch in test_loader:
            model.set_input(batch)
            
            ground_truths, labels, normal_vert_labels, masks,CAMs,heights,x1,x2,slice_ratio = \
                model.real_B,model.real_B_mask,model.normal_vert,model.mask,model.CAM,model.height,\
                    model.x1,model.x2,model.slice_ratio
            maxheight = model.maxheight
            ct_upper_list = []
            ct_bottom_list = []
            for i in range(ground_truths.shape[0]):
                ct_upper = ground_truths[i, :, :x1[i], :]
                ct_bottom = ground_truths[i, :, x2[i]:, :]
                ct_upper_list.append(ct_upper.unsqueeze(0))  # 添加批次维度以便合并
                ct_bottom_list.append(ct_bottom.unsqueeze(0))
                
            # 模型推理
            CAM_temp = 1-CAMs
            inputs = model.real_A
            outputs = model.netG(inputs,masks,CAM_temp,slice_ratio)  # 根据你的模型调整
            coarse_seg_sigmoid,fine_seg_sigmoid, stage1, stage2, offset_flow,pred1_h,pred2_h = outputs  # 根据你的输出调整
            pred1_h = pred1_h.T*maxheight
            pred2_h = pred2_h.T*maxheight

            coarse_seg_binary = torch.where(coarse_seg_sigmoid>0.5,torch.ones_like(coarse_seg_sigmoid),torch.zeros_like(coarse_seg_sigmoid))
            fine_seg_binary = torch.where(fine_seg_sigmoid>0.5,torch.ones_like(fine_seg_sigmoid),torch.zeros_like(fine_seg_sigmoid))
            
            fake_B_raw_list = []
            for i in range(stage2.size(0)):
                height = math.ceil(pred2_h[0][i].item())  # 获取当前图片的目标高度
                if height<heights[i]:
                    height = heights[i]
                height_diff = height-heights[i]
                x_upper = x1[i]-height_diff//2
                x_bottom = x_upper+height
                single_image = torch.zeros_like(stage2[i:i+1])
                single_image[0,:,x_upper:x_bottom,:] = stage2[i:i+1,:,x_upper:x_bottom,:]
                ct_upper = torch.zeros_like(single_image)
                ct_upper[0,:,:x_upper,:] = ground_truths[i, :, height_diff//2:x1[i], :]
                ct_bottom = torch.zeros_like(single_image)
                ct_bottom[0,:,x_bottom:,:] = ground_truths[i, :, x2[i]:x2[i]+256-x_bottom, :]
                interpolated_image = single_image+ct_upper+ct_bottom
                fake_B_raw_list.append(interpolated_image)


            inpainted_result = torch.cat(fake_B_raw_list, dim=0)
            
            # 计算评估指标
            # 注意:你需要将Tensor转换为适合评估函数的numpy数组,且可能需要处理多个样本的batch
            for i in range(inputs.size(0)):  # 遍历batch中的每个样本
                # 这里添加从Tensor到numpy的转换,以及任何必要的预处理步骤
                # 假设ground_truth, label, normal_vert_label已经是正确格式的numpy数组
                ground_truth = ground_truths[i].cpu().numpy()
                label = labels[i].cpu().numpy()
                normal_vert_label = normal_vert_labels[i].cpu().numpy()
                height = heights[i].cpu()
                pred_h = pred2_h[0][i].cpu()
                
                # 假设函数inpainted_result_to_numpy等可以正确转换模型输出
                inpainted_result_np = inpainted_result[i].cpu().numpy()
                coarse_seg_binary_np = coarse_seg_binary[i].cpu().numpy()
                fine_seg_binary_np = fine_seg_binary[i].cpu().numpy()
                mask = masks[i].cpu().numpy()
                
                
                # 示例:计算SSIM
                # 注意,直接把整张图像输入计算SSIM会导致背景区域影响很大
                # 可以结合二值化mask只对前景区域计算SSIM指数
                ssim_score = ssim((ground_truth*mask).squeeze(), (inpainted_result_np*mask).squeeze(), data_range=inpainted_result_np.max() - inpainted_result_np.min(), multichannel=True)
                ssim_scores.append(ssim_score)
                
                image_psnr = psnr((ground_truth*mask).squeeze(), (inpainted_result_np*mask).squeeze(), data_range=inpainted_result_np.max() - ground_truth.min())
                psnr_scores.append(image_psnr)
                
                dice_value_coarse = dice_score(torch.tensor(coarse_seg_binary_np).float(), torch.tensor(normal_vert_label).float())
                dice_scores.append(dice_value_coarse)
                
                iou_value_fine = iou_score(torch.tensor(fine_seg_binary_np).float(), torch.tensor(label).float())
                iou_scores.append(iou_value_fine)
                # 示例:计算PSNR, Dice, IoU等
                Diff_h = (abs(pred_h-height)/height)*100
                #print(Diff_h.cpu())
                Diff_hs.append(Diff_h)
                

        # 在这里计算整个测试集上的评估指标平均值
        #print(ssim_scores)
        avg_ssim = np.mean(ssim_scores)
        avg_psnr = np.mean(psnr_scores)
        avg_dice = np.mean(dice_scores)
        avg_iou = np.mean(iou_scores)

        avg_diffh = np.mean(Diff_hs)
        # 计算其他指标的平均值...
        
    model.train()  # 恢复模型到训练模式
    viz_images = torch.stack([inputs, inpainted_result,ground_truths,
                                              coarse_seg_binary,normal_vert_labels,fine_seg_binary,labels,CAMs], dim=1)
    viz_images = viz_images.view(-1, *list(inputs.size())[1:])
    imgsave_pth =os.path.join(checkpoint_path,"eval_imgs")
    if not os.path.exists(imgsave_pth):
        os.makedirs(imgsave_pth)
    vutils.save_image(viz_images,
                                  '%s/nepoch_%03d_eval.png' % (imgsave_pth, iteration),
                                  nrow=3 * 4,
                                  normalize=True)
    return avg_ssim, avg_psnr, avg_dice, avg_iou, avg_diffh  # 返回计算出的平均指标

if __name__ == '__main__':
    opt = TrainOptions().parse()   # get training options
    logdir=os.path.join(opt.checkpoints_dir, opt.name,'checkpoints')
    if not os.path.exists(logdir):
        os.makedirs(logdir)
    writer = SummaryWriter(logdir=logdir)
    dataset = create_dataset(opt)  # create a dataset given opt.dataset_mode and other options
    dataset_size = len(dataset)    # get the number of images in the dataset.
    print('The number of training images = %d' % dataset_size)
    
    # test setting
    opt_test = TestOptions().parse()  # get test options
    opt_test.batch_size = 5    # test code only supports batch_size = 1
    opt_test.serial_batches = True
    opt_test.phase = "test"
    dataset_test = create_dataset(opt_test)  # create a dataset given opt.dataset_mode and other options

    model = create_model(opt)      # create a model given opt.model and other options
    model.setup(opt)               # regular setup: load and print networks; create schedulers
    visualizer = Visualizer(opt)   # create a visualizer that display/save images and plots
    total_iters = 0                # the total number of training iterations

    for epoch in range(opt.epoch_count, opt.n_epochs + opt.n_epochs_decay + 1):    # outer loop for different epochs; we save the model by <epoch_count>, <epoch_count>+<save_latest_freq>
        epoch_start_time = time.time()  # timer for entire epoch
        iter_data_time = time.time()    # timer for data loading per iteration
        epoch_iter = 0                  # the number of training iterations in current epoch, reset to 0 every epoch
        visualizer.reset()              # reset the visualizer: make sure it saves the results to HTML at least once every epoch
        model.update_learning_rate()    # update learning rates in the beginning of every epoch.
        for i, data in enumerate(dataset):  # inner loop within one epoch
            iter_start_time = time.time()  # timer for computation per iteration
            if total_iters % opt.print_freq == 0:
                t_data = iter_start_time - iter_data_time

            total_iters += opt.batch_size
            epoch_iter += opt.batch_size
            model.set_input(data)         # unpack data from dataset and apply preprocessing
            model.optimize_parameters()   # calculate loss functions, get gradients, update network weights

            if total_iters % opt.display_freq == 0:   # display images on visdom and save images to a HTML file
                save_result = total_iters % opt.update_html_freq == 0
                model.compute_visuals()
                visualizer.display_current_results(model.get_current_visuals(), epoch, save_result)

            if total_iters % opt.print_freq == 0:    # print training losses and save logging information to the disk
                losses = model.get_current_losses()
                t_comp = (time.time() - iter_start_time) / opt.batch_size
                visualizer.print_current_losses(epoch, epoch_iter, losses, t_comp, t_data)
                if opt.display_id > 0:
                    visualizer.plot_current_losses(epoch, float(epoch_iter) / dataset_size, losses)

            if total_iters % opt.save_latest_freq == 0:   # cache our latest model every <save_latest_freq> iterations
                print('saving the latest model (epoch %d, total_iters %d)' % (epoch, total_iters))
                save_suffix = 'iter_%d' % total_iters if opt.save_by_iter else 'latest'
                model.save_networks(save_suffix)

            iter_data_time = time.time()
        if epoch % opt.save_epoch_freq == 0:              # cache our model every <save_epoch_freq> epochs
            print('saving the model at the end of epoch %d, iters %d' % (epoch, total_iters))
            model.save_networks('latest')
            model.save_networks(epoch)
            
        # 经过15个epoch评估一次
        if epoch % 15==0:
            avg_ssim, avg_psnr, avg_dice, avg_iou,avg_diffh = evaluate_model(model, dataset_test, "cuda:0",os.path.join(opt.checkpoints_dir, opt.name),epoch)
             # 记录评估指标
            writer.add_scalar('Eval/SSIM', avg_ssim, epoch)
            writer.add_scalar('Eval/PSNR', avg_psnr, epoch)
            writer.add_scalar('Eval/Dice', avg_dice, epoch)
            writer.add_scalar('Eval/IoU', avg_iou, epoch)
            writer.add_scalar('Eval/DiffH', avg_diffh, epoch)
            print(f'epoch[{epoch}/{opt.n_epochs + opt.n_epochs_decay + 1}], SSIM: {avg_ssim}, PSNR: {avg_psnr}, Dice: {avg_dice}, IoU: {avg_iou}, Diffh: {avg_diffh}')


        print('End of epoch %d / %d \t Time Taken: %d sec' % (epoch, opt.n_epochs + opt.n_epochs_decay, time.time() - epoch_start_time))