update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- f1
|
8 |
+
model-index:
|
9 |
+
- name: bert-base-uncased-finetuned-iemocap8
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# bert-base-uncased-finetuned-iemocap8
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 1.8968
|
21 |
+
- Accuracy: 0.6654
|
22 |
+
- F1: 0.6723
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 4.319412088241492e-05
|
42 |
+
- train_batch_size: 64
|
43 |
+
- eval_batch_size: 32
|
44 |
+
- seed: 42
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- num_epochs: 30
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
52 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
|
53 |
+
| No log | 1.0 | 51 | 1.0531 | 0.5597 | 0.5655 |
|
54 |
+
| 1.0284 | 2.0 | 102 | 0.9370 | 0.6227 | 0.6304 |
|
55 |
+
| 1.0284 | 3.0 | 153 | 0.8796 | 0.6722 | 0.6765 |
|
56 |
+
| 0.4432 | 4.0 | 204 | 0.9785 | 0.6654 | 0.6727 |
|
57 |
+
| 0.4432 | 5.0 | 255 | 1.0664 | 0.6586 | 0.6634 |
|
58 |
+
| 0.2492 | 6.0 | 306 | 1.1291 | 0.6499 | 0.6606 |
|
59 |
+
| 0.2492 | 7.0 | 357 | 1.1847 | 0.6702 | 0.6777 |
|
60 |
+
| 0.1707 | 8.0 | 408 | 1.4084 | 0.6508 | 0.6534 |
|
61 |
+
| 0.1707 | 9.0 | 459 | 1.3468 | 0.6702 | 0.6762 |
|
62 |
+
| 0.1461 | 10.0 | 510 | 1.4245 | 0.6634 | 0.6710 |
|
63 |
+
| 0.1461 | 11.0 | 561 | 1.4865 | 0.6499 | 0.6600 |
|
64 |
+
| 0.1262 | 12.0 | 612 | 1.4616 | 0.6576 | 0.6656 |
|
65 |
+
| 0.1262 | 13.0 | 663 | 1.5335 | 0.6663 | 0.6711 |
|
66 |
+
| 0.1203 | 14.0 | 714 | 1.4855 | 0.6731 | 0.6806 |
|
67 |
+
| 0.1203 | 15.0 | 765 | 1.5825 | 0.6712 | 0.6792 |
|
68 |
+
| 0.1023 | 16.0 | 816 | 1.7145 | 0.6731 | 0.6794 |
|
69 |
+
| 0.1023 | 17.0 | 867 | 1.6676 | 0.6751 | 0.6823 |
|
70 |
+
| 0.0976 | 18.0 | 918 | 1.8013 | 0.6693 | 0.6719 |
|
71 |
+
| 0.0976 | 19.0 | 969 | 1.7192 | 0.6673 | 0.6755 |
|
72 |
+
| 0.0937 | 20.0 | 1020 | 1.7837 | 0.6654 | 0.6731 |
|
73 |
+
| 0.0937 | 21.0 | 1071 | 1.7779 | 0.6760 | 0.6831 |
|
74 |
+
| 0.0901 | 22.0 | 1122 | 1.8352 | 0.6615 | 0.6687 |
|
75 |
+
| 0.0901 | 23.0 | 1173 | 1.8601 | 0.6596 | 0.6656 |
|
76 |
+
| 0.0844 | 24.0 | 1224 | 1.9129 | 0.6625 | 0.6719 |
|
77 |
+
| 0.0844 | 25.0 | 1275 | 1.8507 | 0.6731 | 0.6784 |
|
78 |
+
| 0.0829 | 26.0 | 1326 | 1.8582 | 0.6673 | 0.6735 |
|
79 |
+
| 0.0829 | 27.0 | 1377 | 1.8670 | 0.6770 | 0.6825 |
|
80 |
+
| 0.0839 | 28.0 | 1428 | 1.8763 | 0.6741 | 0.6800 |
|
81 |
+
| 0.0839 | 29.0 | 1479 | 1.8925 | 0.6702 | 0.6769 |
|
82 |
+
| 0.0802 | 30.0 | 1530 | 1.8968 | 0.6654 | 0.6723 |
|
83 |
+
|
84 |
+
|
85 |
+
### Framework versions
|
86 |
+
|
87 |
+
- Transformers 4.26.1
|
88 |
+
- Pytorch 1.13.1+cu116
|
89 |
+
- Datasets 2.10.0
|
90 |
+
- Tokenizers 0.13.2
|