--- license: other base_model: HuggingFaceH4/zephyr-7b-gemma-sft-v0.1 tags: - alignment-handbook - generated_from_trainer datasets: - argilla/dpo-mix-7k model-index: - name: gemma_rpo_eta0.005_no_decay results: [] --- # gemma_rdpo_eta0.005_no_decay This model is a fine-tuned version of [HuggingFaceH4/zephyr-7b-gemma-sft-v0.1](https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-sft-v0.1) on the argilla/dpo-mix-7k dataset. It achieves the following results on the evaluation set: - Loss: 0.5899 - Rewards/chosen: -0.7561 - Rewards/rejected: -2.1676 - Rewards/accuracies: 0.7234 - Rewards/margins: 1.4115 - Logps/rejected: -464.4193 - Logps/chosen: -408.9966 - Logits/rejected: 161.6372 - Logits/chosen: 163.3166 - Eta: 0.0050 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Eta | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:------:| | 0.5915 | 0.9479 | 50 | 0.5745 | -0.7212 | -1.8546 | 0.7021 | 1.1334 | -458.1599 | -408.3000 | 171.6370 | 174.0368 | 0.0050 | | 0.2599 | 1.8957 | 100 | 0.5899 | -0.7561 | -2.1676 | 0.7234 | 1.4115 | -464.4193 | -408.9966 | 161.6372 | 163.3166 | 0.0050 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1