|
import argparse |
|
import logging |
|
import sys |
|
import time |
|
|
|
import tensorflow as tf |
|
from datasets import load_dataset |
|
|
|
from transformers import AutoTokenizer, TFAutoModelForSequenceClassification |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
|
|
parser.add_argument("--epochs", type=int, default=1) |
|
parser.add_argument("--per_device_train_batch_size", type=int, default=16) |
|
parser.add_argument("--per_device_eval_batch_size", type=int, default=8) |
|
parser.add_argument("--model_name_or_path", type=str) |
|
parser.add_argument("--learning_rate", type=str, default=5e-5) |
|
parser.add_argument("--do_train", type=bool, default=True) |
|
parser.add_argument("--do_eval", type=bool, default=True) |
|
parser.add_argument("--output_dir", type=str) |
|
|
|
args, _ = parser.parse_known_args() |
|
|
|
|
|
args.per_device_train_batch_size = 16 |
|
args.per_device_eval_batch_size = 16 |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
logging.basicConfig( |
|
level=logging.getLevelName("INFO"), |
|
handlers=[logging.StreamHandler(sys.stdout)], |
|
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", |
|
) |
|
|
|
|
|
model = TFAutoModelForSequenceClassification.from_pretrained(args.model_name_or_path) |
|
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path) |
|
|
|
|
|
train_dataset, test_dataset = load_dataset("imdb", split=["train", "test"]) |
|
train_dataset = train_dataset.shuffle().select(range(5000)) |
|
test_dataset = test_dataset.shuffle().select(range(500)) |
|
|
|
|
|
train_dataset = train_dataset.map( |
|
lambda e: tokenizer(e["text"], truncation=True, padding="max_length"), batched=True |
|
) |
|
train_dataset.set_format(type="tensorflow", columns=["input_ids", "attention_mask", "label"]) |
|
|
|
train_features = { |
|
x: train_dataset[x].to_tensor(default_value=0, shape=[None, tokenizer.model_max_length]) |
|
for x in ["input_ids", "attention_mask"] |
|
} |
|
tf_train_dataset = tf.data.Dataset.from_tensor_slices((train_features, train_dataset["label"])).batch( |
|
args.per_device_train_batch_size |
|
) |
|
|
|
|
|
test_dataset = test_dataset.map( |
|
lambda e: tokenizer(e["text"], truncation=True, padding="max_length"), batched=True |
|
) |
|
test_dataset.set_format(type="tensorflow", columns=["input_ids", "attention_mask", "label"]) |
|
|
|
test_features = { |
|
x: test_dataset[x].to_tensor(default_value=0, shape=[None, tokenizer.model_max_length]) |
|
for x in ["input_ids", "attention_mask"] |
|
} |
|
tf_test_dataset = tf.data.Dataset.from_tensor_slices((test_features, test_dataset["label"])).batch( |
|
args.per_device_eval_batch_size |
|
) |
|
|
|
|
|
optimizer = tf.keras.optimizers.Adam(learning_rate=args.learning_rate) |
|
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) |
|
metrics = [tf.keras.metrics.SparseCategoricalAccuracy()] |
|
model.compile(optimizer=optimizer, loss=loss, metrics=metrics) |
|
|
|
start_train_time = time.time() |
|
train_results = model.fit(tf_train_dataset, epochs=args.epochs, batch_size=args.per_device_train_batch_size) |
|
end_train_time = time.time() - start_train_time |
|
|
|
logger.info("*** Train ***") |
|
logger.info(f"train_runtime = {end_train_time}") |
|
for key, value in train_results.history.items(): |
|
logger.info(f" {key} = {value}") |
|
|