|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
import unittest |
|
|
|
from transformers import CTRLConfig, is_tf_available |
|
from transformers.testing_utils import require_tf, slow |
|
|
|
from ...test_configuration_common import ConfigTester |
|
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask |
|
from ...test_pipeline_mixin import PipelineTesterMixin |
|
|
|
|
|
if is_tf_available(): |
|
import tensorflow as tf |
|
|
|
from transformers.models.ctrl.modeling_tf_ctrl import ( |
|
TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, |
|
TFCTRLForSequenceClassification, |
|
TFCTRLLMHeadModel, |
|
TFCTRLModel, |
|
) |
|
|
|
|
|
class TFCTRLModelTester(object): |
|
def __init__( |
|
self, |
|
parent, |
|
): |
|
self.parent = parent |
|
self.batch_size = 13 |
|
self.seq_length = 7 |
|
self.is_training = True |
|
self.use_token_type_ids = True |
|
self.use_input_mask = True |
|
self.use_labels = True |
|
self.use_mc_token_ids = True |
|
self.vocab_size = 99 |
|
self.hidden_size = 32 |
|
self.num_hidden_layers = 2 |
|
self.num_attention_heads = 4 |
|
self.intermediate_size = 37 |
|
self.hidden_act = "gelu" |
|
self.hidden_dropout_prob = 0.1 |
|
self.attention_probs_dropout_prob = 0.1 |
|
self.max_position_embeddings = 512 |
|
self.type_vocab_size = 16 |
|
self.type_sequence_label_size = 2 |
|
self.initializer_range = 0.02 |
|
self.num_labels = 3 |
|
self.num_choices = 4 |
|
self.scope = None |
|
self.pad_token_id = self.vocab_size - 1 |
|
|
|
def prepare_config_and_inputs(self): |
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) |
|
|
|
input_mask = None |
|
if self.use_input_mask: |
|
input_mask = random_attention_mask([self.batch_size, self.seq_length]) |
|
|
|
token_type_ids = None |
|
if self.use_token_type_ids: |
|
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) |
|
|
|
mc_token_ids = None |
|
if self.use_mc_token_ids: |
|
mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length) |
|
|
|
sequence_labels = None |
|
token_labels = None |
|
choice_labels = None |
|
if self.use_labels: |
|
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) |
|
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) |
|
choice_labels = ids_tensor([self.batch_size], self.num_choices) |
|
|
|
config = CTRLConfig( |
|
vocab_size=self.vocab_size, |
|
n_embd=self.hidden_size, |
|
n_layer=self.num_hidden_layers, |
|
n_head=self.num_attention_heads, |
|
|
|
|
|
|
|
|
|
n_positions=self.max_position_embeddings, |
|
|
|
|
|
pad_token_id=self.pad_token_id, |
|
) |
|
|
|
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) |
|
|
|
return ( |
|
config, |
|
input_ids, |
|
input_mask, |
|
head_mask, |
|
token_type_ids, |
|
mc_token_ids, |
|
sequence_labels, |
|
token_labels, |
|
choice_labels, |
|
) |
|
|
|
def create_and_check_ctrl_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): |
|
model = TFCTRLModel(config=config) |
|
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} |
|
result = model(inputs) |
|
|
|
inputs = [input_ids, None, input_mask] |
|
result = model(inputs) |
|
|
|
result = model(input_ids) |
|
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) |
|
|
|
def create_and_check_ctrl_lm_head(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): |
|
model = TFCTRLLMHeadModel(config=config) |
|
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} |
|
result = model(inputs) |
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) |
|
|
|
def create_and_check_ctrl_for_sequence_classification( |
|
self, config, input_ids, input_mask, head_mask, token_type_ids, *args |
|
): |
|
config.num_labels = self.num_labels |
|
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) |
|
inputs = { |
|
"input_ids": input_ids, |
|
"token_type_ids": token_type_ids, |
|
"labels": sequence_labels, |
|
} |
|
model = TFCTRLForSequenceClassification(config) |
|
result = model(inputs) |
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) |
|
|
|
def prepare_config_and_inputs_for_common(self): |
|
config_and_inputs = self.prepare_config_and_inputs() |
|
|
|
( |
|
config, |
|
input_ids, |
|
input_mask, |
|
head_mask, |
|
token_type_ids, |
|
mc_token_ids, |
|
sequence_labels, |
|
token_labels, |
|
choice_labels, |
|
) = config_and_inputs |
|
|
|
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} |
|
return config, inputs_dict |
|
|
|
|
|
@require_tf |
|
class TFCTRLModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): |
|
all_model_classes = (TFCTRLModel, TFCTRLLMHeadModel, TFCTRLForSequenceClassification) if is_tf_available() else () |
|
all_generative_model_classes = (TFCTRLLMHeadModel,) if is_tf_available() else () |
|
pipeline_model_mapping = ( |
|
{ |
|
"feature-extraction": TFCTRLModel, |
|
"text-classification": TFCTRLForSequenceClassification, |
|
"text-generation": TFCTRLLMHeadModel, |
|
"zero-shot": TFCTRLForSequenceClassification, |
|
} |
|
if is_tf_available() |
|
else {} |
|
) |
|
test_head_masking = False |
|
test_onnx = False |
|
|
|
|
|
def is_pipeline_test_to_skip( |
|
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name |
|
): |
|
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": |
|
|
|
|
|
|
|
return True |
|
|
|
return False |
|
|
|
def setUp(self): |
|
self.model_tester = TFCTRLModelTester(self) |
|
self.config_tester = ConfigTester(self, config_class=CTRLConfig, n_embd=37) |
|
|
|
def test_config(self): |
|
self.config_tester.run_common_tests() |
|
|
|
def test_ctrl_model(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_ctrl_model(*config_and_inputs) |
|
|
|
def test_ctrl_lm_head(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_ctrl_lm_head(*config_and_inputs) |
|
|
|
def test_ctrl_sequence_classification_model(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_ctrl_for_sequence_classification(*config_and_inputs) |
|
|
|
def test_model_common_attributes(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
list_lm_models = [TFCTRLLMHeadModel] |
|
list_other_models_with_output_ebd = [TFCTRLForSequenceClassification] |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
model.build() |
|
assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer) |
|
|
|
if model_class in list_lm_models: |
|
x = model.get_output_embeddings() |
|
assert isinstance(x, tf.keras.layers.Layer) |
|
name = model.get_bias() |
|
assert isinstance(name, dict) |
|
for k, v in name.items(): |
|
assert isinstance(v, tf.Variable) |
|
elif model_class in list_other_models_with_output_ebd: |
|
x = model.get_output_embeddings() |
|
assert isinstance(x, tf.keras.layers.Layer) |
|
name = model.get_bias() |
|
assert name is None |
|
else: |
|
x = model.get_output_embeddings() |
|
assert x is None |
|
name = model.get_bias() |
|
assert name is None |
|
|
|
@slow |
|
def test_model_from_pretrained(self): |
|
for model_name in TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
model = TFCTRLModel.from_pretrained(model_name) |
|
self.assertIsNotNone(model) |
|
|
|
|
|
@require_tf |
|
class TFCTRLModelLanguageGenerationTest(unittest.TestCase): |
|
@slow |
|
def test_lm_generate_ctrl(self): |
|
model = TFCTRLLMHeadModel.from_pretrained("ctrl") |
|
input_ids = tf.convert_to_tensor([[11859, 0, 1611, 8]], dtype=tf.int32) |
|
expected_output_ids = [ |
|
11859, |
|
0, |
|
1611, |
|
8, |
|
5, |
|
150, |
|
26449, |
|
2, |
|
19, |
|
348, |
|
469, |
|
3, |
|
2595, |
|
48, |
|
20740, |
|
246533, |
|
246533, |
|
19, |
|
30, |
|
5, |
|
] |
|
|
|
output_ids = model.generate(input_ids, do_sample=False) |
|
self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids) |
|
|