|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import numpy as np |
|
|
|
from transformers.testing_utils import require_torch, require_vision |
|
from transformers.utils import is_torch_available, is_vision_available |
|
|
|
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
if is_vision_available(): |
|
from PIL import Image |
|
|
|
from transformers import ConvNextImageProcessor |
|
|
|
|
|
class ConvNextImageProcessingTester(unittest.TestCase): |
|
def __init__( |
|
self, |
|
parent, |
|
batch_size=7, |
|
num_channels=3, |
|
image_size=18, |
|
min_resolution=30, |
|
max_resolution=400, |
|
do_resize=True, |
|
size=None, |
|
crop_pct=0.875, |
|
do_normalize=True, |
|
image_mean=[0.5, 0.5, 0.5], |
|
image_std=[0.5, 0.5, 0.5], |
|
): |
|
size = size if size is not None else {"shortest_edge": 20} |
|
self.parent = parent |
|
self.batch_size = batch_size |
|
self.num_channels = num_channels |
|
self.image_size = image_size |
|
self.min_resolution = min_resolution |
|
self.max_resolution = max_resolution |
|
self.do_resize = do_resize |
|
self.size = size |
|
self.crop_pct = crop_pct |
|
self.do_normalize = do_normalize |
|
self.image_mean = image_mean |
|
self.image_std = image_std |
|
|
|
def prepare_image_processor_dict(self): |
|
return { |
|
"image_mean": self.image_mean, |
|
"image_std": self.image_std, |
|
"do_normalize": self.do_normalize, |
|
"do_resize": self.do_resize, |
|
"size": self.size, |
|
"crop_pct": self.crop_pct, |
|
} |
|
|
|
|
|
@require_torch |
|
@require_vision |
|
class ConvNextImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase): |
|
image_processing_class = ConvNextImageProcessor if is_vision_available() else None |
|
|
|
def setUp(self): |
|
self.image_processor_tester = ConvNextImageProcessingTester(self) |
|
|
|
@property |
|
def image_processor_dict(self): |
|
return self.image_processor_tester.prepare_image_processor_dict() |
|
|
|
def test_image_processor_properties(self): |
|
image_processing = self.image_processing_class(**self.image_processor_dict) |
|
self.assertTrue(hasattr(image_processing, "do_resize")) |
|
self.assertTrue(hasattr(image_processing, "size")) |
|
self.assertTrue(hasattr(image_processing, "crop_pct")) |
|
self.assertTrue(hasattr(image_processing, "do_normalize")) |
|
self.assertTrue(hasattr(image_processing, "image_mean")) |
|
self.assertTrue(hasattr(image_processing, "image_std")) |
|
|
|
def test_image_processor_from_dict_with_kwargs(self): |
|
image_processor = self.image_processing_class.from_dict(self.image_processor_dict) |
|
self.assertEqual(image_processor.size, {"shortest_edge": 20}) |
|
|
|
image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42) |
|
self.assertEqual(image_processor.size, {"shortest_edge": 42}) |
|
|
|
def test_batch_feature(self): |
|
pass |
|
|
|
def test_call_pil(self): |
|
|
|
image_processing = self.image_processing_class(**self.image_processor_dict) |
|
|
|
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False) |
|
for image in image_inputs: |
|
self.assertIsInstance(image, Image.Image) |
|
|
|
|
|
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values |
|
self.assertEqual( |
|
encoded_images.shape, |
|
( |
|
1, |
|
self.image_processor_tester.num_channels, |
|
self.image_processor_tester.size["shortest_edge"], |
|
self.image_processor_tester.size["shortest_edge"], |
|
), |
|
) |
|
|
|
|
|
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values |
|
self.assertEqual( |
|
encoded_images.shape, |
|
( |
|
self.image_processor_tester.batch_size, |
|
self.image_processor_tester.num_channels, |
|
self.image_processor_tester.size["shortest_edge"], |
|
self.image_processor_tester.size["shortest_edge"], |
|
), |
|
) |
|
|
|
def test_call_numpy(self): |
|
|
|
image_processing = self.image_processing_class(**self.image_processor_dict) |
|
|
|
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, numpify=True) |
|
for image in image_inputs: |
|
self.assertIsInstance(image, np.ndarray) |
|
|
|
|
|
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values |
|
self.assertEqual( |
|
encoded_images.shape, |
|
( |
|
1, |
|
self.image_processor_tester.num_channels, |
|
self.image_processor_tester.size["shortest_edge"], |
|
self.image_processor_tester.size["shortest_edge"], |
|
), |
|
) |
|
|
|
|
|
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values |
|
self.assertEqual( |
|
encoded_images.shape, |
|
( |
|
self.image_processor_tester.batch_size, |
|
self.image_processor_tester.num_channels, |
|
self.image_processor_tester.size["shortest_edge"], |
|
self.image_processor_tester.size["shortest_edge"], |
|
), |
|
) |
|
|
|
def test_call_pytorch(self): |
|
|
|
image_processing = self.image_processing_class(**self.image_processor_dict) |
|
|
|
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True) |
|
for image in image_inputs: |
|
self.assertIsInstance(image, torch.Tensor) |
|
|
|
|
|
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values |
|
self.assertEqual( |
|
encoded_images.shape, |
|
( |
|
1, |
|
self.image_processor_tester.num_channels, |
|
self.image_processor_tester.size["shortest_edge"], |
|
self.image_processor_tester.size["shortest_edge"], |
|
), |
|
) |
|
|
|
|
|
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values |
|
self.assertEqual( |
|
encoded_images.shape, |
|
( |
|
self.image_processor_tester.batch_size, |
|
self.image_processor_tester.num_channels, |
|
self.image_processor_tester.size["shortest_edge"], |
|
self.image_processor_tester.size["shortest_edge"], |
|
), |
|
) |
|
|