|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import shutil |
|
import tempfile |
|
import unittest |
|
|
|
from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast |
|
from transformers.testing_utils import require_sentencepiece, require_torchaudio |
|
|
|
from .test_feature_extraction_clap import floats_list |
|
|
|
|
|
@require_torchaudio |
|
@require_sentencepiece |
|
class ClapProcessorTest(unittest.TestCase): |
|
def setUp(self): |
|
self.checkpoint = "laion/clap-htsat-unfused" |
|
self.tmpdirname = tempfile.mkdtemp() |
|
|
|
def get_tokenizer(self, **kwargs): |
|
return RobertaTokenizer.from_pretrained(self.checkpoint, **kwargs) |
|
|
|
def get_feature_extractor(self, **kwargs): |
|
return ClapFeatureExtractor.from_pretrained(self.checkpoint, **kwargs) |
|
|
|
def tearDown(self): |
|
shutil.rmtree(self.tmpdirname) |
|
|
|
def test_save_load_pretrained_default(self): |
|
tokenizer = self.get_tokenizer() |
|
feature_extractor = self.get_feature_extractor() |
|
|
|
processor = ClapProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) |
|
|
|
processor.save_pretrained(self.tmpdirname) |
|
processor = ClapProcessor.from_pretrained(self.tmpdirname) |
|
|
|
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab()) |
|
self.assertIsInstance(processor.tokenizer, RobertaTokenizerFast) |
|
|
|
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string()) |
|
self.assertIsInstance(processor.feature_extractor, ClapFeatureExtractor) |
|
|
|
def test_save_load_pretrained_additional_features(self): |
|
processor = ClapProcessor(tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor()) |
|
processor.save_pretrained(self.tmpdirname) |
|
|
|
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") |
|
feature_extractor_add_kwargs = self.get_feature_extractor(do_normalize=False, padding_value=1.0) |
|
|
|
processor = ClapProcessor.from_pretrained( |
|
self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0 |
|
) |
|
|
|
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) |
|
self.assertIsInstance(processor.tokenizer, RobertaTokenizerFast) |
|
|
|
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string()) |
|
self.assertIsInstance(processor.feature_extractor, ClapFeatureExtractor) |
|
|
|
def test_feature_extractor(self): |
|
feature_extractor = self.get_feature_extractor() |
|
tokenizer = self.get_tokenizer() |
|
|
|
processor = ClapProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) |
|
|
|
raw_speech = floats_list((3, 1000)) |
|
|
|
input_feat_extract = feature_extractor(raw_speech, return_tensors="np") |
|
input_processor = processor(audios=raw_speech, return_tensors="np") |
|
|
|
for key in input_feat_extract.keys(): |
|
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) |
|
|
|
def test_tokenizer(self): |
|
feature_extractor = self.get_feature_extractor() |
|
tokenizer = self.get_tokenizer() |
|
|
|
processor = ClapProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) |
|
|
|
input_str = "This is a test string" |
|
|
|
encoded_processor = processor(text=input_str) |
|
|
|
encoded_tok = tokenizer(input_str) |
|
|
|
for key in encoded_tok.keys(): |
|
self.assertListEqual(encoded_tok[key], encoded_processor[key]) |
|
|
|
def test_tokenizer_decode(self): |
|
feature_extractor = self.get_feature_extractor() |
|
tokenizer = self.get_tokenizer() |
|
|
|
processor = ClapProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) |
|
|
|
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] |
|
|
|
decoded_processor = processor.batch_decode(predicted_ids) |
|
decoded_tok = tokenizer.batch_decode(predicted_ids) |
|
|
|
self.assertListEqual(decoded_tok, decoded_processor) |
|
|
|
def test_model_input_names(self): |
|
feature_extractor = self.get_feature_extractor() |
|
tokenizer = self.get_tokenizer() |
|
|
|
processor = ClapProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) |
|
|
|
self.assertListEqual( |
|
processor.model_input_names[2:], |
|
feature_extractor.model_input_names, |
|
msg="`processor` and `feature_extractor` model input names do not match", |
|
) |
|
|