|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import numpy as np |
|
import timeout_decorator |
|
|
|
from transformers import BlenderbotConfig, is_flax_available |
|
from transformers.testing_utils import jax_device, require_flax, slow |
|
|
|
from ...generation.test_flax_utils import FlaxGenerationTesterMixin |
|
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor |
|
|
|
|
|
if is_flax_available(): |
|
import os |
|
|
|
|
|
|
|
|
|
os.environ["XLA_PYTHON_CLIENT_ALLOCATOR"] = "platform" |
|
|
|
import jax |
|
import jax.numpy as jnp |
|
|
|
from transformers import BlenderbotTokenizer |
|
from transformers.models.blenderbot.modeling_flax_blenderbot import ( |
|
FlaxBlenderbotForConditionalGeneration, |
|
FlaxBlenderbotModel, |
|
shift_tokens_right, |
|
) |
|
|
|
|
|
def prepare_blenderbot_inputs_dict( |
|
config, |
|
input_ids, |
|
decoder_input_ids=None, |
|
attention_mask=None, |
|
decoder_attention_mask=None, |
|
head_mask=None, |
|
decoder_head_mask=None, |
|
cross_attn_head_mask=None, |
|
): |
|
if attention_mask is None: |
|
attention_mask = np.where(input_ids != config.pad_token_id, 1, 0) |
|
if decoder_attention_mask is None: |
|
decoder_attention_mask = np.where(decoder_input_ids != config.pad_token_id, 1, 0) |
|
if head_mask is None: |
|
head_mask = np.ones((config.encoder_layers, config.encoder_attention_heads)) |
|
if decoder_head_mask is None: |
|
decoder_head_mask = np.ones((config.decoder_layers, config.decoder_attention_heads)) |
|
if cross_attn_head_mask is None: |
|
cross_attn_head_mask = np.ones((config.decoder_layers, config.decoder_attention_heads)) |
|
return { |
|
"input_ids": input_ids, |
|
"decoder_input_ids": decoder_input_ids, |
|
"attention_mask": attention_mask, |
|
"decoder_attention_mask": attention_mask, |
|
} |
|
|
|
|
|
class FlaxBlenderbotModelTester: |
|
def __init__( |
|
self, |
|
parent, |
|
batch_size=13, |
|
seq_length=7, |
|
is_training=True, |
|
use_labels=False, |
|
vocab_size=99, |
|
hidden_size=16, |
|
num_hidden_layers=2, |
|
num_attention_heads=4, |
|
intermediate_size=4, |
|
hidden_act="gelu", |
|
hidden_dropout_prob=0.1, |
|
attention_probs_dropout_prob=0.1, |
|
max_position_embeddings=32, |
|
eos_token_id=2, |
|
pad_token_id=1, |
|
bos_token_id=0, |
|
initializer_range=0.02, |
|
): |
|
self.parent = parent |
|
self.batch_size = batch_size |
|
self.seq_length = seq_length |
|
self.is_training = is_training |
|
self.use_labels = use_labels |
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.intermediate_size = intermediate_size |
|
self.hidden_act = hidden_act |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.max_position_embeddings = max_position_embeddings |
|
self.eos_token_id = eos_token_id |
|
self.pad_token_id = pad_token_id |
|
self.bos_token_id = bos_token_id |
|
self.initializer_range = initializer_range |
|
|
|
def prepare_config_and_inputs(self): |
|
input_ids = np.clip(ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size), 3, self.vocab_size) |
|
input_ids = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1), dtype=np.int64)), -1) |
|
|
|
decoder_input_ids = shift_tokens_right(input_ids, 1, 2) |
|
|
|
config = BlenderbotConfig( |
|
vocab_size=self.vocab_size, |
|
d_model=self.hidden_size, |
|
encoder_layers=self.num_hidden_layers, |
|
decoder_layers=self.num_hidden_layers, |
|
encoder_attention_heads=self.num_attention_heads, |
|
decoder_attention_heads=self.num_attention_heads, |
|
encoder_ffn_dim=self.intermediate_size, |
|
decoder_ffn_dim=self.intermediate_size, |
|
dropout=self.hidden_dropout_prob, |
|
attention_dropout=self.attention_probs_dropout_prob, |
|
max_position_embeddings=self.max_position_embeddings, |
|
eos_token_id=self.eos_token_id, |
|
bos_token_id=self.bos_token_id, |
|
pad_token_id=self.pad_token_id, |
|
initializer_range=self.initializer_range, |
|
use_cache=False, |
|
) |
|
inputs_dict = prepare_blenderbot_inputs_dict(config, input_ids, decoder_input_ids) |
|
return config, inputs_dict |
|
|
|
def prepare_config_and_inputs_for_common(self): |
|
config, inputs_dict = self.prepare_config_and_inputs() |
|
return config, inputs_dict |
|
|
|
def check_use_cache_forward(self, model_class_name, config, inputs_dict): |
|
max_decoder_length = 20 |
|
model = model_class_name(config) |
|
|
|
encoder_outputs = model.encode(inputs_dict["input_ids"]) |
|
|
|
decoder_input_ids, decoder_attention_mask = ( |
|
inputs_dict["decoder_input_ids"], |
|
inputs_dict["decoder_attention_mask"], |
|
) |
|
|
|
past_key_values = model.init_cache(decoder_input_ids.shape[0], max_decoder_length, encoder_outputs) |
|
decoder_attention_mask = jnp.ones((decoder_input_ids.shape[0], max_decoder_length), dtype="i4") |
|
|
|
decoder_position_ids = jnp.broadcast_to( |
|
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :], |
|
(decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1), |
|
) |
|
outputs_cache = model.decode( |
|
decoder_input_ids[:, :-1], |
|
encoder_outputs, |
|
decoder_attention_mask=decoder_attention_mask, |
|
past_key_values=past_key_values, |
|
decoder_position_ids=decoder_position_ids, |
|
) |
|
|
|
decoder_position_ids = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype="i4") |
|
outputs_cache_next = model.decode( |
|
decoder_input_ids[:, -1:], |
|
encoder_outputs, |
|
decoder_attention_mask=decoder_attention_mask, |
|
past_key_values=outputs_cache.past_key_values, |
|
decoder_position_ids=decoder_position_ids, |
|
) |
|
|
|
outputs = model.decode(decoder_input_ids, encoder_outputs) |
|
|
|
diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) |
|
self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}") |
|
|
|
def check_use_cache_forward_with_attn_mask(self, model_class_name, config, inputs_dict): |
|
max_decoder_length = 20 |
|
model = model_class_name(config) |
|
|
|
encoder_outputs = model.encode(inputs_dict["input_ids"]) |
|
|
|
decoder_input_ids, decoder_attention_mask = ( |
|
inputs_dict["decoder_input_ids"], |
|
inputs_dict["decoder_attention_mask"], |
|
) |
|
|
|
decoder_attention_mask_cache = jnp.concatenate( |
|
[ |
|
decoder_attention_mask, |
|
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), |
|
], |
|
axis=-1, |
|
) |
|
|
|
past_key_values = model.init_cache(decoder_input_ids.shape[0], max_decoder_length, encoder_outputs) |
|
decoder_position_ids = jnp.broadcast_to( |
|
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :], |
|
(decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1), |
|
) |
|
|
|
outputs_cache = model.decode( |
|
decoder_input_ids[:, :-1], |
|
encoder_outputs, |
|
decoder_attention_mask=decoder_attention_mask_cache, |
|
past_key_values=past_key_values, |
|
decoder_position_ids=decoder_position_ids, |
|
) |
|
decoder_position_ids = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype="i4") |
|
outputs_cache_next = model.decode( |
|
decoder_input_ids[:, -1:], |
|
encoder_outputs, |
|
past_key_values=outputs_cache.past_key_values, |
|
decoder_attention_mask=decoder_attention_mask_cache, |
|
decoder_position_ids=decoder_position_ids, |
|
) |
|
|
|
outputs = model.decode(decoder_input_ids, encoder_outputs, decoder_attention_mask=decoder_attention_mask) |
|
|
|
diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) |
|
self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}") |
|
|
|
|
|
@require_flax |
|
class BlenderbotHeadTests(unittest.TestCase): |
|
vocab_size = 99 |
|
|
|
def _get_config_and_data(self): |
|
input_ids = np.array( |
|
[ |
|
[71, 82, 18, 33, 46, 91, 2], |
|
[68, 34, 26, 58, 30, 82, 2], |
|
[5, 97, 17, 39, 94, 40, 2], |
|
[76, 83, 94, 25, 70, 78, 2], |
|
[87, 59, 41, 35, 48, 66, 2], |
|
[55, 13, 16, 58, 5, 2, 1], |
|
[64, 27, 31, 51, 12, 75, 2], |
|
[52, 64, 86, 17, 83, 39, 2], |
|
[48, 61, 9, 24, 71, 82, 2], |
|
[26, 1, 60, 48, 22, 13, 2], |
|
[21, 5, 62, 28, 14, 76, 2], |
|
[45, 98, 37, 86, 59, 48, 2], |
|
[70, 70, 50, 9, 28, 0, 2], |
|
], |
|
dtype=np.int64, |
|
) |
|
|
|
batch_size = input_ids.shape[0] |
|
config = BlenderbotConfig( |
|
vocab_size=self.vocab_size, |
|
d_model=24, |
|
encoder_layers=2, |
|
decoder_layers=2, |
|
encoder_attention_heads=2, |
|
decoder_attention_heads=2, |
|
encoder_ffn_dim=32, |
|
decoder_ffn_dim=32, |
|
max_position_embeddings=48, |
|
eos_token_id=2, |
|
pad_token_id=1, |
|
bos_token_id=0, |
|
) |
|
return config, input_ids, batch_size |
|
|
|
|
|
def test_lm_forward(self): |
|
config, input_ids, batch_size = self._get_config_and_data() |
|
lm_model = FlaxBlenderbotForConditionalGeneration(config) |
|
outputs = lm_model(input_ids=input_ids) |
|
expected_shape = (batch_size, input_ids.shape[1], config.vocab_size) |
|
self.assertEqual(outputs["logits"].shape, expected_shape) |
|
|
|
def test_lm_uneven_forward(self): |
|
config = BlenderbotConfig( |
|
vocab_size=self.vocab_size, |
|
d_model=14, |
|
encoder_layers=2, |
|
decoder_layers=2, |
|
encoder_attention_heads=2, |
|
decoder_attention_heads=2, |
|
encoder_ffn_dim=8, |
|
decoder_ffn_dim=8, |
|
max_position_embeddings=48, |
|
) |
|
lm_model = FlaxBlenderbotForConditionalGeneration(config) |
|
context = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]], dtype=np.int64) |
|
summary = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]], dtype=np.int64) |
|
outputs = lm_model(input_ids=context, decoder_input_ids=summary) |
|
expected_shape = (*summary.shape, config.vocab_size) |
|
self.assertEqual(outputs["logits"].shape, expected_shape) |
|
|
|
def test_shift_tokens_right(self): |
|
input_ids = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]], dtype=np.int64) |
|
shifted = shift_tokens_right(input_ids, 1, 2) |
|
n_pad_before = np.equal(input_ids, 1).astype(np.float32).sum() |
|
n_pad_after = np.equal(shifted, 1).astype(np.float32).sum() |
|
self.assertEqual(shifted.shape, input_ids.shape) |
|
self.assertEqual(n_pad_after, n_pad_before - 1) |
|
self.assertTrue(np.equal(shifted[:, 0], 2).all()) |
|
|
|
|
|
@require_flax |
|
class FlaxBlenderbotModelTest(FlaxModelTesterMixin, unittest.TestCase, FlaxGenerationTesterMixin): |
|
is_encoder_decoder = True |
|
all_model_classes = ( |
|
( |
|
FlaxBlenderbotModel, |
|
FlaxBlenderbotForConditionalGeneration, |
|
) |
|
if is_flax_available() |
|
else () |
|
) |
|
all_generative_model_classes = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () |
|
|
|
def setUp(self): |
|
self.model_tester = FlaxBlenderbotModelTester(self) |
|
|
|
def test_use_cache_forward(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs() |
|
for model_class in self.all_model_classes: |
|
self.model_tester.check_use_cache_forward(model_class, config, inputs_dict) |
|
|
|
def test_use_cache_forward_with_attn_mask(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs() |
|
for model_class in self.all_model_classes: |
|
self.model_tester.check_use_cache_forward_with_attn_mask(model_class, config, inputs_dict) |
|
|
|
def test_encode(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
with self.subTest(model_class.__name__): |
|
prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) |
|
model = model_class(config) |
|
|
|
@jax.jit |
|
def encode_jitted(input_ids, attention_mask=None, **kwargs): |
|
return model.encode(input_ids=input_ids, attention_mask=attention_mask) |
|
|
|
with self.subTest("JIT Enabled"): |
|
jitted_outputs = encode_jitted(**prepared_inputs_dict).to_tuple() |
|
|
|
with self.subTest("JIT Disabled"): |
|
with jax.disable_jit(): |
|
outputs = encode_jitted(**prepared_inputs_dict).to_tuple() |
|
|
|
self.assertEqual(len(outputs), len(jitted_outputs)) |
|
for jitted_output, output in zip(jitted_outputs, outputs): |
|
self.assertEqual(jitted_output.shape, output.shape) |
|
|
|
def test_decode(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
with self.subTest(model_class.__name__): |
|
model = model_class(config) |
|
encoder_outputs = model.encode(inputs_dict["input_ids"], inputs_dict["attention_mask"]) |
|
|
|
prepared_inputs_dict = { |
|
"decoder_input_ids": inputs_dict["decoder_input_ids"], |
|
"decoder_attention_mask": inputs_dict["decoder_attention_mask"], |
|
"encoder_outputs": encoder_outputs, |
|
} |
|
|
|
@jax.jit |
|
def decode_jitted(decoder_input_ids, decoder_attention_mask, encoder_outputs): |
|
return model.decode( |
|
decoder_input_ids=decoder_input_ids, |
|
decoder_attention_mask=decoder_attention_mask, |
|
encoder_outputs=encoder_outputs, |
|
) |
|
|
|
with self.subTest("JIT Enabled"): |
|
jitted_outputs = decode_jitted(**prepared_inputs_dict).to_tuple() |
|
|
|
with self.subTest("JIT Disabled"): |
|
with jax.disable_jit(): |
|
outputs = decode_jitted(**prepared_inputs_dict).to_tuple() |
|
|
|
self.assertEqual(len(outputs), len(jitted_outputs)) |
|
for jitted_output, output in zip(jitted_outputs, outputs): |
|
self.assertEqual(jitted_output.shape, output.shape) |
|
|
|
@slow |
|
def test_model_from_pretrained(self): |
|
for model_class_name in self.all_model_classes: |
|
model = model_class_name.from_pretrained("facebook/blenderbot-400M-distill") |
|
|
|
input_ids = np.ones((1, 1)) * model.config.eos_token_id |
|
outputs = model(input_ids) |
|
self.assertIsNotNone(outputs) |
|
|
|
@unittest.skipUnless(jax_device != "cpu", "3B test too slow on CPU.") |
|
@slow |
|
def test_generation_from_short_input_same_as_parlai_3B(self): |
|
FASTER_GEN_KWARGS = {"num_beams": 1, "early_stopping": True, "min_length": 15, "max_length": 25} |
|
TOK_DECODE_KW = {"skip_special_tokens": True, "clean_up_tokenization_spaces": True} |
|
|
|
model = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-3B", from_pt=True) |
|
tokenizer = BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B") |
|
|
|
src_text = ["Sam"] |
|
model_inputs = tokenizer(src_text, return_tensors="jax") |
|
|
|
generated_utterances = model.generate(**model_inputs, **FASTER_GEN_KWARGS) |
|
tgt_text = 'Sam is a great name. It means "sun" in Gaelic.' |
|
|
|
generated_txt = tokenizer.batch_decode(generated_utterances, **TOK_DECODE_KW) |
|
assert generated_txt[0].strip() == tgt_text |
|
|