|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
import unittest |
|
|
|
from transformers import BertConfig, is_tf_available |
|
from transformers.models.auto import get_values |
|
from transformers.testing_utils import require_tf, slow |
|
|
|
from ...test_configuration_common import ConfigTester |
|
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask |
|
from ...test_pipeline_mixin import PipelineTesterMixin |
|
from ...utils.test_modeling_tf_core import TFCoreModelTesterMixin |
|
|
|
|
|
if is_tf_available(): |
|
import tensorflow as tf |
|
|
|
from transformers import TF_MODEL_FOR_PRETRAINING_MAPPING |
|
from transformers.models.bert.modeling_tf_bert import ( |
|
TFBertForMaskedLM, |
|
TFBertForMultipleChoice, |
|
TFBertForNextSentencePrediction, |
|
TFBertForPreTraining, |
|
TFBertForQuestionAnswering, |
|
TFBertForSequenceClassification, |
|
TFBertForTokenClassification, |
|
TFBertLMHeadModel, |
|
TFBertModel, |
|
) |
|
|
|
|
|
class TFBertModelTester: |
|
def __init__( |
|
self, |
|
parent, |
|
batch_size=13, |
|
seq_length=7, |
|
is_training=True, |
|
use_input_mask=True, |
|
use_token_type_ids=True, |
|
use_labels=True, |
|
vocab_size=99, |
|
hidden_size=32, |
|
num_hidden_layers=2, |
|
num_attention_heads=4, |
|
intermediate_size=37, |
|
hidden_act="gelu", |
|
hidden_dropout_prob=0.1, |
|
attention_probs_dropout_prob=0.1, |
|
max_position_embeddings=512, |
|
type_vocab_size=16, |
|
type_sequence_label_size=2, |
|
initializer_range=0.02, |
|
num_labels=3, |
|
num_choices=4, |
|
scope=None, |
|
): |
|
self.parent = parent |
|
self.batch_size = 13 |
|
self.seq_length = 7 |
|
self.is_training = True |
|
self.use_input_mask = True |
|
self.use_token_type_ids = True |
|
self.use_labels = True |
|
self.vocab_size = 99 |
|
self.hidden_size = 32 |
|
self.num_hidden_layers = 2 |
|
self.num_attention_heads = 4 |
|
self.intermediate_size = 37 |
|
self.hidden_act = "gelu" |
|
self.hidden_dropout_prob = 0.1 |
|
self.attention_probs_dropout_prob = 0.1 |
|
self.max_position_embeddings = 512 |
|
self.type_vocab_size = 16 |
|
self.type_sequence_label_size = 2 |
|
self.initializer_range = 0.02 |
|
self.num_labels = 3 |
|
self.num_choices = 4 |
|
self.scope = None |
|
|
|
def prepare_config_and_inputs(self): |
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) |
|
|
|
input_mask = None |
|
if self.use_input_mask: |
|
input_mask = random_attention_mask([self.batch_size, self.seq_length]) |
|
|
|
token_type_ids = None |
|
if self.use_token_type_ids: |
|
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) |
|
|
|
sequence_labels = None |
|
token_labels = None |
|
choice_labels = None |
|
if self.use_labels: |
|
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) |
|
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) |
|
choice_labels = ids_tensor([self.batch_size], self.num_choices) |
|
|
|
config = BertConfig( |
|
vocab_size=self.vocab_size, |
|
hidden_size=self.hidden_size, |
|
num_hidden_layers=self.num_hidden_layers, |
|
num_attention_heads=self.num_attention_heads, |
|
intermediate_size=self.intermediate_size, |
|
hidden_act=self.hidden_act, |
|
hidden_dropout_prob=self.hidden_dropout_prob, |
|
attention_probs_dropout_prob=self.attention_probs_dropout_prob, |
|
max_position_embeddings=self.max_position_embeddings, |
|
type_vocab_size=self.type_vocab_size, |
|
initializer_range=self.initializer_range, |
|
) |
|
|
|
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels |
|
|
|
def prepare_config_and_inputs_for_decoder(self): |
|
( |
|
config, |
|
input_ids, |
|
token_type_ids, |
|
input_mask, |
|
sequence_labels, |
|
token_labels, |
|
choice_labels, |
|
) = self.prepare_config_and_inputs() |
|
|
|
config.is_decoder = True |
|
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) |
|
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) |
|
|
|
return ( |
|
config, |
|
input_ids, |
|
token_type_ids, |
|
input_mask, |
|
sequence_labels, |
|
token_labels, |
|
choice_labels, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
) |
|
|
|
def create_and_check_model( |
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels |
|
): |
|
model = TFBertModel(config=config) |
|
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} |
|
result = model(inputs) |
|
|
|
inputs = [input_ids, input_mask] |
|
result = model(inputs) |
|
|
|
result = model(input_ids) |
|
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) |
|
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) |
|
|
|
def create_and_check_causal_lm_base_model( |
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels |
|
): |
|
config.is_decoder = True |
|
|
|
model = TFBertModel(config=config) |
|
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} |
|
result = model(inputs) |
|
|
|
inputs = [input_ids, input_mask] |
|
result = model(inputs) |
|
|
|
result = model(input_ids) |
|
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) |
|
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) |
|
|
|
def create_and_check_model_as_decoder( |
|
self, |
|
config, |
|
input_ids, |
|
token_type_ids, |
|
input_mask, |
|
sequence_labels, |
|
token_labels, |
|
choice_labels, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
): |
|
config.add_cross_attention = True |
|
|
|
model = TFBertModel(config=config) |
|
inputs = { |
|
"input_ids": input_ids, |
|
"attention_mask": input_mask, |
|
"token_type_ids": token_type_ids, |
|
"encoder_hidden_states": encoder_hidden_states, |
|
"encoder_attention_mask": encoder_attention_mask, |
|
} |
|
result = model(inputs) |
|
|
|
inputs = [input_ids, input_mask] |
|
result = model(inputs, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states) |
|
|
|
|
|
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) |
|
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) |
|
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) |
|
|
|
def create_and_check_causal_lm_model( |
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels |
|
): |
|
config.is_decoder = True |
|
|
|
model = TFBertLMHeadModel(config=config) |
|
inputs = { |
|
"input_ids": input_ids, |
|
"attention_mask": input_mask, |
|
"token_type_ids": token_type_ids, |
|
} |
|
prediction_scores = model(inputs)["logits"] |
|
self.parent.assertListEqual( |
|
list(prediction_scores.numpy().shape), [self.batch_size, self.seq_length, self.vocab_size] |
|
) |
|
|
|
def create_and_check_causal_lm_model_as_decoder( |
|
self, |
|
config, |
|
input_ids, |
|
token_type_ids, |
|
input_mask, |
|
sequence_labels, |
|
token_labels, |
|
choice_labels, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
): |
|
config.add_cross_attention = True |
|
|
|
model = TFBertLMHeadModel(config=config) |
|
inputs = { |
|
"input_ids": input_ids, |
|
"attention_mask": input_mask, |
|
"token_type_ids": token_type_ids, |
|
"encoder_hidden_states": encoder_hidden_states, |
|
"encoder_attention_mask": encoder_attention_mask, |
|
} |
|
result = model(inputs) |
|
|
|
inputs = [input_ids, input_mask] |
|
result = model(inputs, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states) |
|
|
|
prediction_scores = result["logits"] |
|
self.parent.assertListEqual( |
|
list(prediction_scores.numpy().shape), [self.batch_size, self.seq_length, self.vocab_size] |
|
) |
|
|
|
def create_and_check_causal_lm_model_past( |
|
self, |
|
config, |
|
input_ids, |
|
token_type_ids, |
|
input_mask, |
|
sequence_labels, |
|
token_labels, |
|
choice_labels, |
|
): |
|
config.is_decoder = True |
|
|
|
model = TFBertLMHeadModel(config=config) |
|
|
|
|
|
outputs = model(input_ids, use_cache=True) |
|
outputs_use_cache_conf = model(input_ids) |
|
outputs_no_past = model(input_ids, use_cache=False) |
|
|
|
self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) |
|
self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) |
|
|
|
past_key_values = outputs.past_key_values |
|
|
|
|
|
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) |
|
|
|
|
|
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) |
|
|
|
output_from_no_past = model(next_input_ids, output_hidden_states=True).hidden_states[0] |
|
output_from_past = model( |
|
next_tokens, past_key_values=past_key_values, output_hidden_states=True |
|
).hidden_states[0] |
|
|
|
|
|
random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1])) |
|
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx] |
|
output_from_past_slice = output_from_past[:, 0, random_slice_idx] |
|
|
|
|
|
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6) |
|
|
|
def create_and_check_causal_lm_model_past_with_attn_mask( |
|
self, |
|
config, |
|
input_ids, |
|
token_type_ids, |
|
input_mask, |
|
sequence_labels, |
|
token_labels, |
|
choice_labels, |
|
): |
|
config.is_decoder = True |
|
|
|
model = TFBertLMHeadModel(config=config) |
|
|
|
|
|
half_seq_length = self.seq_length // 2 |
|
attn_mask_begin = tf.ones((self.batch_size, half_seq_length), dtype=tf.int32) |
|
attn_mask_end = tf.zeros((self.batch_size, self.seq_length - half_seq_length), dtype=tf.int32) |
|
attn_mask = tf.concat([attn_mask_begin, attn_mask_end], axis=1) |
|
|
|
|
|
outputs = model(input_ids, attention_mask=attn_mask, use_cache=True) |
|
|
|
|
|
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) |
|
|
|
past_key_values = outputs.past_key_values |
|
|
|
|
|
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).numpy() + 1 |
|
random_other_next_tokens = ids_tensor((self.batch_size, self.seq_length), config.vocab_size) |
|
vector_condition = tf.range(self.seq_length) == (self.seq_length - random_seq_idx_to_change) |
|
condition = tf.transpose( |
|
tf.broadcast_to(tf.expand_dims(vector_condition, -1), (self.seq_length, self.batch_size)) |
|
) |
|
input_ids = tf.where(condition, random_other_next_tokens, input_ids) |
|
|
|
|
|
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) |
|
attn_mask = tf.concat( |
|
[attn_mask, tf.ones((attn_mask.shape[0], 1), dtype=tf.int32)], |
|
axis=1, |
|
) |
|
|
|
output_from_no_past = model( |
|
next_input_ids, |
|
attention_mask=attn_mask, |
|
output_hidden_states=True, |
|
).hidden_states[0] |
|
output_from_past = model( |
|
next_tokens, past_key_values=past_key_values, attention_mask=attn_mask, output_hidden_states=True |
|
).hidden_states[0] |
|
|
|
|
|
random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1])) |
|
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx] |
|
output_from_past_slice = output_from_past[:, 0, random_slice_idx] |
|
|
|
|
|
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6) |
|
|
|
def create_and_check_causal_lm_model_past_large_inputs( |
|
self, |
|
config, |
|
input_ids, |
|
token_type_ids, |
|
input_mask, |
|
sequence_labels, |
|
token_labels, |
|
choice_labels, |
|
): |
|
config.is_decoder = True |
|
|
|
model = TFBertLMHeadModel(config=config) |
|
|
|
input_ids = input_ids[:1, :] |
|
input_mask = input_mask[:1, :] |
|
self.batch_size = 1 |
|
|
|
|
|
outputs = model(input_ids, attention_mask=input_mask, use_cache=True) |
|
past_key_values = outputs.past_key_values |
|
|
|
|
|
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) |
|
next_attn_mask = ids_tensor((self.batch_size, 3), 2) |
|
|
|
|
|
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) |
|
next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1) |
|
|
|
output_from_no_past = model( |
|
next_input_ids, |
|
attention_mask=next_attention_mask, |
|
output_hidden_states=True, |
|
).hidden_states[0] |
|
output_from_past = model( |
|
next_tokens, |
|
attention_mask=next_attention_mask, |
|
past_key_values=past_key_values, |
|
output_hidden_states=True, |
|
).hidden_states[0] |
|
|
|
self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1]) |
|
|
|
|
|
random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1])) |
|
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx] |
|
output_from_past_slice = output_from_past[:, :, random_slice_idx] |
|
|
|
|
|
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3) |
|
|
|
def create_and_check_decoder_model_past_large_inputs( |
|
self, |
|
config, |
|
input_ids, |
|
token_type_ids, |
|
input_mask, |
|
sequence_labels, |
|
token_labels, |
|
choice_labels, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
): |
|
config.add_cross_attention = True |
|
|
|
model = TFBertLMHeadModel(config=config) |
|
|
|
input_ids = input_ids[:1, :] |
|
input_mask = input_mask[:1, :] |
|
encoder_hidden_states = encoder_hidden_states[:1, :, :] |
|
encoder_attention_mask = encoder_attention_mask[:1, :] |
|
self.batch_size = 1 |
|
|
|
|
|
outputs = model( |
|
input_ids, |
|
attention_mask=input_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
use_cache=True, |
|
) |
|
past_key_values = outputs.past_key_values |
|
|
|
|
|
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) |
|
next_attn_mask = ids_tensor((self.batch_size, 3), 2) |
|
|
|
|
|
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) |
|
next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1) |
|
|
|
output_from_no_past = model( |
|
next_input_ids, |
|
attention_mask=next_attention_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
output_hidden_states=True, |
|
).hidden_states[0] |
|
output_from_past = model( |
|
next_tokens, |
|
attention_mask=next_attention_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
past_key_values=past_key_values, |
|
output_hidden_states=True, |
|
).hidden_states[0] |
|
|
|
self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1]) |
|
|
|
|
|
random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1])) |
|
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx] |
|
output_from_past_slice = output_from_past[:, :, random_slice_idx] |
|
|
|
|
|
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3) |
|
|
|
def create_and_check_for_masked_lm( |
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels |
|
): |
|
model = TFBertForMaskedLM(config=config) |
|
inputs = { |
|
"input_ids": input_ids, |
|
"attention_mask": input_mask, |
|
"token_type_ids": token_type_ids, |
|
} |
|
result = model(inputs) |
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) |
|
|
|
def create_and_check_for_next_sequence_prediction( |
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels |
|
): |
|
model = TFBertForNextSentencePrediction(config=config) |
|
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} |
|
result = model(inputs) |
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, 2)) |
|
|
|
def create_and_check_for_pretraining( |
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels |
|
): |
|
model = TFBertForPreTraining(config=config) |
|
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} |
|
result = model(inputs) |
|
self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) |
|
self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2)) |
|
|
|
def create_and_check_for_sequence_classification( |
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels |
|
): |
|
config.num_labels = self.num_labels |
|
model = TFBertForSequenceClassification(config=config) |
|
inputs = { |
|
"input_ids": input_ids, |
|
"attention_mask": input_mask, |
|
"token_type_ids": token_type_ids, |
|
} |
|
|
|
result = model(inputs) |
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) |
|
|
|
def create_and_check_for_multiple_choice( |
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels |
|
): |
|
config.num_choices = self.num_choices |
|
model = TFBertForMultipleChoice(config=config) |
|
multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1)) |
|
multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1)) |
|
multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1)) |
|
inputs = { |
|
"input_ids": multiple_choice_inputs_ids, |
|
"attention_mask": multiple_choice_input_mask, |
|
"token_type_ids": multiple_choice_token_type_ids, |
|
} |
|
result = model(inputs) |
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) |
|
|
|
def create_and_check_for_token_classification( |
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels |
|
): |
|
config.num_labels = self.num_labels |
|
model = TFBertForTokenClassification(config=config) |
|
inputs = { |
|
"input_ids": input_ids, |
|
"attention_mask": input_mask, |
|
"token_type_ids": token_type_ids, |
|
} |
|
result = model(inputs) |
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) |
|
|
|
def create_and_check_for_question_answering( |
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels |
|
): |
|
model = TFBertForQuestionAnswering(config=config) |
|
inputs = { |
|
"input_ids": input_ids, |
|
"attention_mask": input_mask, |
|
"token_type_ids": token_type_ids, |
|
} |
|
|
|
result = model(inputs) |
|
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) |
|
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) |
|
|
|
def prepare_config_and_inputs_for_common(self): |
|
config_and_inputs = self.prepare_config_and_inputs() |
|
( |
|
config, |
|
input_ids, |
|
token_type_ids, |
|
input_mask, |
|
sequence_labels, |
|
token_labels, |
|
choice_labels, |
|
) = config_and_inputs |
|
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} |
|
return config, inputs_dict |
|
|
|
|
|
@require_tf |
|
class TFBertModelTest(TFModelTesterMixin, TFCoreModelTesterMixin, PipelineTesterMixin, unittest.TestCase): |
|
all_model_classes = ( |
|
( |
|
TFBertModel, |
|
TFBertForMaskedLM, |
|
TFBertLMHeadModel, |
|
TFBertForNextSentencePrediction, |
|
TFBertForPreTraining, |
|
TFBertForQuestionAnswering, |
|
TFBertForSequenceClassification, |
|
TFBertForTokenClassification, |
|
TFBertForMultipleChoice, |
|
) |
|
if is_tf_available() |
|
else () |
|
) |
|
pipeline_model_mapping = ( |
|
{ |
|
"feature-extraction": TFBertModel, |
|
"fill-mask": TFBertForMaskedLM, |
|
"question-answering": TFBertForQuestionAnswering, |
|
"text-classification": TFBertForSequenceClassification, |
|
"text-generation": TFBertLMHeadModel, |
|
"token-classification": TFBertForTokenClassification, |
|
"zero-shot": TFBertForSequenceClassification, |
|
} |
|
if is_tf_available() |
|
else {} |
|
) |
|
test_head_masking = False |
|
test_onnx = True |
|
onnx_min_opset = 10 |
|
|
|
|
|
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): |
|
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) |
|
|
|
if return_labels: |
|
if model_class in get_values(TF_MODEL_FOR_PRETRAINING_MAPPING): |
|
inputs_dict["next_sentence_label"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32) |
|
|
|
return inputs_dict |
|
|
|
def setUp(self): |
|
self.model_tester = TFBertModelTester(self) |
|
self.config_tester = ConfigTester(self, config_class=BertConfig, hidden_size=37) |
|
|
|
def test_config(self): |
|
self.config_tester.run_common_tests() |
|
|
|
def test_model(self): |
|
"""Test the base model""" |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_model(*config_and_inputs) |
|
|
|
def test_causal_lm_base_model(self): |
|
"""Test the base model of the causal LM model |
|
|
|
is_deocder=True, no cross_attention, no encoder outputs |
|
""" |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_causal_lm_base_model(*config_and_inputs) |
|
|
|
def test_model_as_decoder(self): |
|
"""Test the base model as a decoder (of an encoder-decoder architecture) |
|
|
|
is_deocder=True + cross_attention + pass encoder outputs |
|
""" |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() |
|
self.model_tester.create_and_check_model_as_decoder(*config_and_inputs) |
|
|
|
def test_for_masked_lm(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) |
|
|
|
def test_for_causal_lm(self): |
|
"""Test the causal LM model""" |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_causal_lm_model(*config_and_inputs) |
|
|
|
def test_causal_lm_model_as_decoder(self): |
|
"""Test the causal LM model as a decoder""" |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() |
|
self.model_tester.create_and_check_causal_lm_model_as_decoder(*config_and_inputs) |
|
|
|
def test_causal_lm_model_past(self): |
|
"""Test causal LM model with `past_key_values`""" |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_causal_lm_model_past(*config_and_inputs) |
|
|
|
def test_causal_lm_model_past_with_attn_mask(self): |
|
"""Test the causal LM model with `past_key_values` and `attention_mask`""" |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_causal_lm_model_past_with_attn_mask(*config_and_inputs) |
|
|
|
def test_causal_lm_model_past_with_large_inputs(self): |
|
"""Test the causal LM model with `past_key_values` and a longer decoder sequence length""" |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_causal_lm_model_past_large_inputs(*config_and_inputs) |
|
|
|
def test_decoder_model_past_with_large_inputs(self): |
|
"""Similar to `test_causal_lm_model_past_with_large_inputs` but with cross-attention""" |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() |
|
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) |
|
|
|
def test_for_multiple_choice(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) |
|
|
|
def test_for_next_sequence_prediction(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_for_next_sequence_prediction(*config_and_inputs) |
|
|
|
def test_for_pretraining(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_for_pretraining(*config_and_inputs) |
|
|
|
def test_for_question_answering(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_for_question_answering(*config_and_inputs) |
|
|
|
def test_for_sequence_classification(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) |
|
|
|
def test_for_token_classification(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_for_token_classification(*config_and_inputs) |
|
|
|
def test_model_from_pretrained(self): |
|
model = TFBertModel.from_pretrained("jplu/tiny-tf-bert-random") |
|
self.assertIsNotNone(model) |
|
|
|
def test_custom_load_tf_weights(self): |
|
model, output_loading_info = TFBertForTokenClassification.from_pretrained( |
|
"jplu/tiny-tf-bert-random", output_loading_info=True |
|
) |
|
self.assertEqual(sorted(output_loading_info["unexpected_keys"]), []) |
|
for layer in output_loading_info["missing_keys"]: |
|
self.assertTrue(layer.split("_")[0] in ["dropout", "classifier"]) |
|
|
|
|
|
@unittest.skip("Onnx compliancy broke with TF 2.10") |
|
def test_onnx_compliancy(self): |
|
pass |
|
|
|
|
|
@require_tf |
|
class TFBertModelIntegrationTest(unittest.TestCase): |
|
@slow |
|
def test_inference_masked_lm(self): |
|
model = TFBertForPreTraining.from_pretrained("lysandre/tiny-bert-random") |
|
input_ids = tf.constant([[0, 1, 2, 3, 4, 5]]) |
|
output = model(input_ids)[0] |
|
|
|
expected_shape = [1, 6, 32000] |
|
self.assertEqual(output.shape, expected_shape) |
|
|
|
print(output[:, :3, :3]) |
|
|
|
expected_slice = tf.constant( |
|
[ |
|
[ |
|
[-0.05243197, -0.04498899, 0.05512108], |
|
[-0.07444685, -0.01064632, 0.04352357], |
|
[-0.05020351, 0.05530146, 0.00700043], |
|
] |
|
] |
|
) |
|
tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=1e-4) |
|
|