|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
import unittest |
|
|
|
from transformers import is_tf_available, is_torch_available |
|
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow |
|
|
|
|
|
if is_tf_available(): |
|
from transformers import ( |
|
AutoConfig, |
|
BertConfig, |
|
GPT2Config, |
|
T5Config, |
|
TFAutoModel, |
|
TFAutoModelForCausalLM, |
|
TFAutoModelForMaskedLM, |
|
TFAutoModelForPreTraining, |
|
TFAutoModelForQuestionAnswering, |
|
TFAutoModelForSeq2SeqLM, |
|
TFAutoModelForSequenceClassification, |
|
TFAutoModelWithLMHead, |
|
TFBertForMaskedLM, |
|
TFBertForPreTraining, |
|
TFBertForQuestionAnswering, |
|
TFBertForSequenceClassification, |
|
TFBertModel, |
|
TFGPT2LMHeadModel, |
|
TFRobertaForMaskedLM, |
|
TFT5ForConditionalGeneration, |
|
) |
|
from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST |
|
from transformers.models.gpt2.modeling_tf_gpt2 import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST |
|
from transformers.models.t5.modeling_tf_t5 import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST |
|
|
|
if is_torch_available(): |
|
from transformers import ( |
|
AutoModel, |
|
AutoModelForCausalLM, |
|
AutoModelForMaskedLM, |
|
AutoModelForPreTraining, |
|
AutoModelForQuestionAnswering, |
|
AutoModelForSeq2SeqLM, |
|
AutoModelForSequenceClassification, |
|
AutoModelWithLMHead, |
|
BertForMaskedLM, |
|
BertForPreTraining, |
|
BertForQuestionAnswering, |
|
BertForSequenceClassification, |
|
BertModel, |
|
GPT2LMHeadModel, |
|
RobertaForMaskedLM, |
|
T5ForConditionalGeneration, |
|
) |
|
|
|
|
|
@is_pt_tf_cross_test |
|
class TFPTAutoModelTest(unittest.TestCase): |
|
@slow |
|
def test_model_from_pretrained(self): |
|
|
|
for model_name in ["bert-base-uncased"]: |
|
config = AutoConfig.from_pretrained(model_name) |
|
self.assertIsNotNone(config) |
|
self.assertIsInstance(config, BertConfig) |
|
|
|
model = TFAutoModel.from_pretrained(model_name, from_pt=True) |
|
self.assertIsNotNone(model) |
|
self.assertIsInstance(model, TFBertModel) |
|
|
|
model = AutoModel.from_pretrained(model_name, from_tf=True) |
|
self.assertIsNotNone(model) |
|
self.assertIsInstance(model, BertModel) |
|
|
|
@slow |
|
def test_model_for_pretraining_from_pretrained(self): |
|
|
|
for model_name in ["bert-base-uncased"]: |
|
config = AutoConfig.from_pretrained(model_name) |
|
self.assertIsNotNone(config) |
|
self.assertIsInstance(config, BertConfig) |
|
|
|
model = TFAutoModelForPreTraining.from_pretrained(model_name, from_pt=True) |
|
self.assertIsNotNone(model) |
|
self.assertIsInstance(model, TFBertForPreTraining) |
|
|
|
model = AutoModelForPreTraining.from_pretrained(model_name, from_tf=True) |
|
self.assertIsNotNone(model) |
|
self.assertIsInstance(model, BertForPreTraining) |
|
|
|
@slow |
|
def test_model_for_causal_lm(self): |
|
for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
config = AutoConfig.from_pretrained(model_name) |
|
self.assertIsNotNone(config) |
|
self.assertIsInstance(config, GPT2Config) |
|
|
|
model = TFAutoModelForCausalLM.from_pretrained(model_name, from_pt=True) |
|
model, loading_info = TFAutoModelForCausalLM.from_pretrained( |
|
model_name, output_loading_info=True, from_pt=True |
|
) |
|
self.assertIsNotNone(model) |
|
self.assertIsInstance(model, TFGPT2LMHeadModel) |
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_name, from_tf=True) |
|
model, loading_info = AutoModelForCausalLM.from_pretrained( |
|
model_name, output_loading_info=True, from_tf=True |
|
) |
|
self.assertIsNotNone(model) |
|
self.assertIsInstance(model, GPT2LMHeadModel) |
|
|
|
@slow |
|
def test_lmhead_model_from_pretrained(self): |
|
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
config = AutoConfig.from_pretrained(model_name) |
|
self.assertIsNotNone(config) |
|
self.assertIsInstance(config, BertConfig) |
|
|
|
model = TFAutoModelWithLMHead.from_pretrained(model_name, from_pt=True) |
|
self.assertIsNotNone(model) |
|
self.assertIsInstance(model, TFBertForMaskedLM) |
|
|
|
model = AutoModelWithLMHead.from_pretrained(model_name, from_tf=True) |
|
self.assertIsNotNone(model) |
|
self.assertIsInstance(model, BertForMaskedLM) |
|
|
|
@slow |
|
def test_model_for_masked_lm(self): |
|
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
config = AutoConfig.from_pretrained(model_name) |
|
self.assertIsNotNone(config) |
|
self.assertIsInstance(config, BertConfig) |
|
|
|
model = TFAutoModelForMaskedLM.from_pretrained(model_name, from_pt=True) |
|
model, loading_info = TFAutoModelForMaskedLM.from_pretrained( |
|
model_name, output_loading_info=True, from_pt=True |
|
) |
|
self.assertIsNotNone(model) |
|
self.assertIsInstance(model, TFBertForMaskedLM) |
|
|
|
model = AutoModelForMaskedLM.from_pretrained(model_name, from_tf=True) |
|
model, loading_info = AutoModelForMaskedLM.from_pretrained( |
|
model_name, output_loading_info=True, from_tf=True |
|
) |
|
self.assertIsNotNone(model) |
|
self.assertIsInstance(model, BertForMaskedLM) |
|
|
|
@slow |
|
def test_model_for_encoder_decoder_lm(self): |
|
for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
config = AutoConfig.from_pretrained(model_name) |
|
self.assertIsNotNone(config) |
|
self.assertIsInstance(config, T5Config) |
|
|
|
model = TFAutoModelForSeq2SeqLM.from_pretrained(model_name, from_pt=True) |
|
model, loading_info = TFAutoModelForSeq2SeqLM.from_pretrained( |
|
model_name, output_loading_info=True, from_pt=True |
|
) |
|
self.assertIsNotNone(model) |
|
self.assertIsInstance(model, TFT5ForConditionalGeneration) |
|
|
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, from_tf=True) |
|
model, loading_info = AutoModelForSeq2SeqLM.from_pretrained( |
|
model_name, output_loading_info=True, from_tf=True |
|
) |
|
self.assertIsNotNone(model) |
|
self.assertIsInstance(model, T5ForConditionalGeneration) |
|
|
|
@slow |
|
def test_sequence_classification_model_from_pretrained(self): |
|
|
|
for model_name in ["bert-base-uncased"]: |
|
config = AutoConfig.from_pretrained(model_name) |
|
self.assertIsNotNone(config) |
|
self.assertIsInstance(config, BertConfig) |
|
|
|
model = TFAutoModelForSequenceClassification.from_pretrained(model_name, from_pt=True) |
|
self.assertIsNotNone(model) |
|
self.assertIsInstance(model, TFBertForSequenceClassification) |
|
|
|
model = AutoModelForSequenceClassification.from_pretrained(model_name, from_tf=True) |
|
self.assertIsNotNone(model) |
|
self.assertIsInstance(model, BertForSequenceClassification) |
|
|
|
@slow |
|
def test_question_answering_model_from_pretrained(self): |
|
|
|
for model_name in ["bert-base-uncased"]: |
|
config = AutoConfig.from_pretrained(model_name) |
|
self.assertIsNotNone(config) |
|
self.assertIsInstance(config, BertConfig) |
|
|
|
model = TFAutoModelForQuestionAnswering.from_pretrained(model_name, from_pt=True) |
|
self.assertIsNotNone(model) |
|
self.assertIsInstance(model, TFBertForQuestionAnswering) |
|
|
|
model = AutoModelForQuestionAnswering.from_pretrained(model_name, from_tf=True) |
|
self.assertIsNotNone(model) |
|
self.assertIsInstance(model, BertForQuestionAnswering) |
|
|
|
def test_from_pretrained_identifier(self): |
|
model = TFAutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER, from_pt=True) |
|
self.assertIsInstance(model, TFBertForMaskedLM) |
|
self.assertEqual(model.num_parameters(), 14410) |
|
self.assertEqual(model.num_parameters(only_trainable=True), 14410) |
|
|
|
model = AutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER, from_tf=True) |
|
self.assertIsInstance(model, BertForMaskedLM) |
|
self.assertEqual(model.num_parameters(), 14410) |
|
self.assertEqual(model.num_parameters(only_trainable=True), 14410) |
|
|
|
def test_from_identifier_from_model_type(self): |
|
model = TFAutoModelWithLMHead.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER, from_pt=True) |
|
self.assertIsInstance(model, TFRobertaForMaskedLM) |
|
self.assertEqual(model.num_parameters(), 14410) |
|
self.assertEqual(model.num_parameters(only_trainable=True), 14410) |
|
|
|
model = AutoModelWithLMHead.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER, from_tf=True) |
|
self.assertIsInstance(model, RobertaForMaskedLM) |
|
self.assertEqual(model.num_parameters(), 14410) |
|
self.assertEqual(model.num_parameters(only_trainable=True), 14410) |
|
|