|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import os |
|
import shutil |
|
import tempfile |
|
import unittest |
|
|
|
import numpy as np |
|
import pytest |
|
|
|
from transformers import BertTokenizer, BertTokenizerFast |
|
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES |
|
from transformers.testing_utils import require_vision |
|
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available |
|
|
|
|
|
if is_vision_available(): |
|
from PIL import Image |
|
|
|
from transformers import AlignProcessor, EfficientNetImageProcessor |
|
|
|
|
|
@require_vision |
|
class AlignProcessorTest(unittest.TestCase): |
|
def setUp(self): |
|
self.tmpdirname = tempfile.mkdtemp() |
|
|
|
vocab_tokens = [ |
|
"[UNK]", |
|
"[CLS]", |
|
"[SEP]", |
|
"[PAD]", |
|
"[MASK]", |
|
"want", |
|
"##want", |
|
"##ed", |
|
"wa", |
|
"un", |
|
"runn", |
|
"##ing", |
|
",", |
|
"low", |
|
"lowest", |
|
] |
|
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) |
|
with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: |
|
vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) |
|
|
|
image_processor_map = { |
|
"do_resize": True, |
|
"size": 20, |
|
"do_center_crop": True, |
|
"crop_size": 18, |
|
"do_normalize": True, |
|
"image_mean": [0.48145466, 0.4578275, 0.40821073], |
|
"image_std": [0.26862954, 0.26130258, 0.27577711], |
|
} |
|
self.image_processor_file = os.path.join(self.tmpdirname, IMAGE_PROCESSOR_NAME) |
|
with open(self.image_processor_file, "w", encoding="utf-8") as fp: |
|
json.dump(image_processor_map, fp) |
|
|
|
def get_tokenizer(self, **kwargs): |
|
return BertTokenizer.from_pretrained(self.tmpdirname, **kwargs) |
|
|
|
def get_rust_tokenizer(self, **kwargs): |
|
return BertTokenizerFast.from_pretrained(self.tmpdirname, **kwargs) |
|
|
|
def get_image_processor(self, **kwargs): |
|
return EfficientNetImageProcessor.from_pretrained(self.tmpdirname, **kwargs) |
|
|
|
def tearDown(self): |
|
shutil.rmtree(self.tmpdirname) |
|
|
|
def prepare_image_inputs(self): |
|
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True, |
|
or a list of PyTorch tensors if one specifies torchify=True. |
|
""" |
|
|
|
image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)] |
|
image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs] |
|
return image_inputs |
|
|
|
def test_save_load_pretrained_default(self): |
|
tokenizer_slow = self.get_tokenizer() |
|
tokenizer_fast = self.get_rust_tokenizer() |
|
image_processor = self.get_image_processor() |
|
|
|
processor_slow = AlignProcessor(tokenizer=tokenizer_slow, image_processor=image_processor) |
|
processor_slow.save_pretrained(self.tmpdirname) |
|
processor_slow = AlignProcessor.from_pretrained(self.tmpdirname, use_fast=False) |
|
|
|
processor_fast = AlignProcessor(tokenizer=tokenizer_fast, image_processor=image_processor) |
|
processor_fast.save_pretrained(self.tmpdirname) |
|
processor_fast = AlignProcessor.from_pretrained(self.tmpdirname) |
|
|
|
self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab()) |
|
self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab()) |
|
self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab()) |
|
self.assertIsInstance(processor_slow.tokenizer, BertTokenizer) |
|
self.assertIsInstance(processor_fast.tokenizer, BertTokenizerFast) |
|
|
|
self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string()) |
|
self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string()) |
|
self.assertIsInstance(processor_slow.image_processor, EfficientNetImageProcessor) |
|
self.assertIsInstance(processor_fast.image_processor, EfficientNetImageProcessor) |
|
|
|
def test_save_load_pretrained_additional_features(self): |
|
processor = AlignProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) |
|
processor.save_pretrained(self.tmpdirname) |
|
|
|
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") |
|
image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0) |
|
|
|
processor = AlignProcessor.from_pretrained( |
|
self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0 |
|
) |
|
|
|
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) |
|
self.assertIsInstance(processor.tokenizer, BertTokenizerFast) |
|
|
|
self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) |
|
self.assertIsInstance(processor.image_processor, EfficientNetImageProcessor) |
|
|
|
def test_image_processor(self): |
|
image_processor = self.get_image_processor() |
|
tokenizer = self.get_tokenizer() |
|
|
|
processor = AlignProcessor(tokenizer=tokenizer, image_processor=image_processor) |
|
|
|
image_input = self.prepare_image_inputs() |
|
|
|
input_image_proc = image_processor(image_input, return_tensors="np") |
|
input_processor = processor(images=image_input, return_tensors="np") |
|
|
|
for key in input_image_proc.keys(): |
|
self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1e-2) |
|
|
|
def test_tokenizer(self): |
|
image_processor = self.get_image_processor() |
|
tokenizer = self.get_tokenizer() |
|
|
|
processor = AlignProcessor(tokenizer=tokenizer, image_processor=image_processor) |
|
|
|
input_str = "lower newer" |
|
|
|
encoded_processor = processor(text=input_str) |
|
|
|
encoded_tok = tokenizer(input_str, padding="max_length", max_length=64) |
|
|
|
for key in encoded_tok.keys(): |
|
self.assertListEqual(encoded_tok[key], encoded_processor[key]) |
|
|
|
def test_processor(self): |
|
image_processor = self.get_image_processor() |
|
tokenizer = self.get_tokenizer() |
|
|
|
processor = AlignProcessor(tokenizer=tokenizer, image_processor=image_processor) |
|
|
|
input_str = "lower newer" |
|
image_input = self.prepare_image_inputs() |
|
|
|
inputs = processor(text=input_str, images=image_input) |
|
|
|
self.assertListEqual(list(inputs.keys()), ["input_ids", "token_type_ids", "attention_mask", "pixel_values"]) |
|
|
|
|
|
with pytest.raises(ValueError): |
|
processor() |
|
|
|
def test_tokenizer_decode(self): |
|
image_processor = self.get_image_processor() |
|
tokenizer = self.get_tokenizer() |
|
|
|
processor = AlignProcessor(tokenizer=tokenizer, image_processor=image_processor) |
|
|
|
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] |
|
|
|
decoded_processor = processor.batch_decode(predicted_ids) |
|
decoded_tok = tokenizer.batch_decode(predicted_ids) |
|
|
|
self.assertListEqual(decoded_tok, decoded_processor) |
|
|
|
def test_model_input_names(self): |
|
image_processor = self.get_image_processor() |
|
tokenizer = self.get_tokenizer() |
|
|
|
processor = AlignProcessor(tokenizer=tokenizer, image_processor=image_processor) |
|
|
|
input_str = "lower newer" |
|
image_input = self.prepare_image_inputs() |
|
|
|
inputs = processor(text=input_str, images=image_input) |
|
|
|
self.assertListEqual(list(inputs.keys()), processor.model_input_names) |
|
|