|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Fine-tuning a 🤗 Transformers model on token classification tasks (NER, POS, CHUNKS) relying on the accelerate library |
|
without using a Trainer. |
|
""" |
|
|
|
import argparse |
|
import json |
|
import logging |
|
import math |
|
import os |
|
import random |
|
from pathlib import Path |
|
|
|
import datasets |
|
import evaluate |
|
import numpy as np |
|
import torch |
|
from accelerate import Accelerator |
|
from accelerate.logging import get_logger |
|
from accelerate.utils import set_seed |
|
from datasets import ClassLabel, load_dataset |
|
from huggingface_hub import Repository, create_repo |
|
from torch.utils.data import DataLoader |
|
from tqdm.auto import tqdm |
|
|
|
import transformers |
|
from transformers import ( |
|
CONFIG_MAPPING, |
|
MODEL_MAPPING, |
|
AutoConfig, |
|
AutoModelForTokenClassification, |
|
AutoTokenizer, |
|
DataCollatorForTokenClassification, |
|
PretrainedConfig, |
|
SchedulerType, |
|
default_data_collator, |
|
get_scheduler, |
|
) |
|
from transformers.utils import check_min_version, get_full_repo_name, send_example_telemetry |
|
from transformers.utils.versions import require_version |
|
|
|
|
|
|
|
check_min_version("4.32.0.dev0") |
|
|
|
logger = get_logger(__name__) |
|
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt") |
|
|
|
|
|
MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys()) |
|
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser( |
|
description="Finetune a transformers model on a text classification task (NER) with accelerate library" |
|
) |
|
parser.add_argument( |
|
"--dataset_name", |
|
type=str, |
|
default=None, |
|
help="The name of the dataset to use (via the datasets library).", |
|
) |
|
parser.add_argument( |
|
"--dataset_config_name", |
|
type=str, |
|
default=None, |
|
help="The configuration name of the dataset to use (via the datasets library).", |
|
) |
|
parser.add_argument( |
|
"--train_file", type=str, default=None, help="A csv or a json file containing the training data." |
|
) |
|
parser.add_argument( |
|
"--validation_file", type=str, default=None, help="A csv or a json file containing the validation data." |
|
) |
|
parser.add_argument( |
|
"--text_column_name", |
|
type=str, |
|
default=None, |
|
help="The column name of text to input in the file (a csv or JSON file).", |
|
) |
|
parser.add_argument( |
|
"--label_column_name", |
|
type=str, |
|
default=None, |
|
help="The column name of label to input in the file (a csv or JSON file).", |
|
) |
|
parser.add_argument( |
|
"--max_length", |
|
type=int, |
|
default=128, |
|
help=( |
|
"The maximum total input sequence length after tokenization. Sequences longer than this will be truncated," |
|
" sequences shorter will be padded if `--pad_to_max_length` is passed." |
|
), |
|
) |
|
parser.add_argument( |
|
"--pad_to_max_length", |
|
action="store_true", |
|
help="If passed, pad all samples to `max_length`. Otherwise, dynamic padding is used.", |
|
) |
|
parser.add_argument( |
|
"--model_name_or_path", |
|
type=str, |
|
help="Path to pretrained model or model identifier from huggingface.co/models.", |
|
required=False, |
|
) |
|
parser.add_argument( |
|
"--config_name", |
|
type=str, |
|
default=None, |
|
help="Pretrained config name or path if not the same as model_name", |
|
) |
|
parser.add_argument( |
|
"--tokenizer_name", |
|
type=str, |
|
default=None, |
|
help="Pretrained tokenizer name or path if not the same as model_name", |
|
) |
|
parser.add_argument( |
|
"--per_device_train_batch_size", |
|
type=int, |
|
default=8, |
|
help="Batch size (per device) for the training dataloader.", |
|
) |
|
parser.add_argument( |
|
"--per_device_eval_batch_size", |
|
type=int, |
|
default=8, |
|
help="Batch size (per device) for the evaluation dataloader.", |
|
) |
|
parser.add_argument( |
|
"--learning_rate", |
|
type=float, |
|
default=5e-5, |
|
help="Initial learning rate (after the potential warmup period) to use.", |
|
) |
|
parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.") |
|
parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.") |
|
parser.add_argument( |
|
"--max_train_steps", |
|
type=int, |
|
default=None, |
|
help="Total number of training steps to perform. If provided, overrides num_train_epochs.", |
|
) |
|
parser.add_argument( |
|
"--gradient_accumulation_steps", |
|
type=int, |
|
default=1, |
|
help="Number of updates steps to accumulate before performing a backward/update pass.", |
|
) |
|
parser.add_argument( |
|
"--lr_scheduler_type", |
|
type=SchedulerType, |
|
default="linear", |
|
help="The scheduler type to use.", |
|
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"], |
|
) |
|
parser.add_argument( |
|
"--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler." |
|
) |
|
parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.") |
|
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") |
|
parser.add_argument( |
|
"--model_type", |
|
type=str, |
|
default=None, |
|
help="Model type to use if training from scratch.", |
|
choices=MODEL_TYPES, |
|
) |
|
parser.add_argument( |
|
"--label_all_tokens", |
|
action="store_true", |
|
help="Setting labels of all special tokens to -100 and thus PyTorch will ignore them.", |
|
) |
|
parser.add_argument( |
|
"--return_entity_level_metrics", |
|
action="store_true", |
|
help="Indication whether entity level metrics are to be returner.", |
|
) |
|
parser.add_argument( |
|
"--task_name", |
|
type=str, |
|
default="ner", |
|
choices=["ner", "pos", "chunk"], |
|
help="The name of the task.", |
|
) |
|
parser.add_argument( |
|
"--debug", |
|
action="store_true", |
|
help="Activate debug mode and run training only with a subset of data.", |
|
) |
|
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") |
|
parser.add_argument( |
|
"--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`." |
|
) |
|
parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.") |
|
parser.add_argument( |
|
"--checkpointing_steps", |
|
type=str, |
|
default=None, |
|
help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.", |
|
) |
|
parser.add_argument( |
|
"--resume_from_checkpoint", |
|
type=str, |
|
default=None, |
|
help="If the training should continue from a checkpoint folder.", |
|
) |
|
parser.add_argument( |
|
"--with_tracking", |
|
action="store_true", |
|
help="Whether to enable experiment trackers for logging.", |
|
) |
|
parser.add_argument( |
|
"--report_to", |
|
type=str, |
|
default="all", |
|
help=( |
|
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`,' |
|
' `"wandb"`, `"comet_ml"` and `"clearml"`. Use `"all"` (default) to report to all integrations.' |
|
"Only applicable when `--with_tracking` is passed." |
|
), |
|
) |
|
parser.add_argument( |
|
"--ignore_mismatched_sizes", |
|
action="store_true", |
|
help="Whether or not to enable to load a pretrained model whose head dimensions are different.", |
|
) |
|
args = parser.parse_args() |
|
|
|
|
|
if args.task_name is None and args.train_file is None and args.validation_file is None: |
|
raise ValueError("Need either a task name or a training/validation file.") |
|
else: |
|
if args.train_file is not None: |
|
extension = args.train_file.split(".")[-1] |
|
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." |
|
if args.validation_file is not None: |
|
extension = args.validation_file.split(".")[-1] |
|
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." |
|
|
|
if args.push_to_hub: |
|
assert args.output_dir is not None, "Need an `output_dir` to create a repo when `--push_to_hub` is passed." |
|
|
|
return args |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
|
|
|
|
|
|
send_example_telemetry("run_ner_no_trainer", args) |
|
|
|
|
|
|
|
|
|
accelerator = ( |
|
Accelerator(log_with=args.report_to, project_dir=args.output_dir) if args.with_tracking else Accelerator() |
|
) |
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO, |
|
) |
|
logger.info(accelerator.state, main_process_only=False) |
|
if accelerator.is_local_main_process: |
|
datasets.utils.logging.set_verbosity_warning() |
|
transformers.utils.logging.set_verbosity_info() |
|
else: |
|
datasets.utils.logging.set_verbosity_error() |
|
transformers.utils.logging.set_verbosity_error() |
|
|
|
|
|
if args.seed is not None: |
|
set_seed(args.seed) |
|
|
|
|
|
if accelerator.is_main_process: |
|
if args.push_to_hub: |
|
if args.hub_model_id is None: |
|
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token) |
|
else: |
|
repo_name = args.hub_model_id |
|
create_repo(repo_name, exist_ok=True, token=args.hub_token) |
|
repo = Repository(args.output_dir, clone_from=repo_name, token=args.hub_token) |
|
|
|
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore: |
|
if "step_*" not in gitignore: |
|
gitignore.write("step_*\n") |
|
if "epoch_*" not in gitignore: |
|
gitignore.write("epoch_*\n") |
|
elif args.output_dir is not None: |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
accelerator.wait_for_everyone() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if args.dataset_name is not None: |
|
|
|
raw_datasets = load_dataset(args.dataset_name, args.dataset_config_name) |
|
else: |
|
data_files = {} |
|
if args.train_file is not None: |
|
data_files["train"] = args.train_file |
|
if args.validation_file is not None: |
|
data_files["validation"] = args.validation_file |
|
extension = args.train_file.split(".")[-1] |
|
raw_datasets = load_dataset(extension, data_files=data_files) |
|
|
|
if args.debug: |
|
for split in raw_datasets.keys(): |
|
raw_datasets[split] = raw_datasets[split].select(range(100)) |
|
|
|
|
|
|
|
if raw_datasets["train"] is not None: |
|
column_names = raw_datasets["train"].column_names |
|
features = raw_datasets["train"].features |
|
else: |
|
column_names = raw_datasets["validation"].column_names |
|
features = raw_datasets["validation"].features |
|
|
|
if args.text_column_name is not None: |
|
text_column_name = args.text_column_name |
|
elif "tokens" in column_names: |
|
text_column_name = "tokens" |
|
else: |
|
text_column_name = column_names[0] |
|
|
|
if args.label_column_name is not None: |
|
label_column_name = args.label_column_name |
|
elif f"{args.task_name}_tags" in column_names: |
|
label_column_name = f"{args.task_name}_tags" |
|
else: |
|
label_column_name = column_names[1] |
|
|
|
|
|
|
|
def get_label_list(labels): |
|
unique_labels = set() |
|
for label in labels: |
|
unique_labels = unique_labels | set(label) |
|
label_list = list(unique_labels) |
|
label_list.sort() |
|
return label_list |
|
|
|
|
|
|
|
labels_are_int = isinstance(features[label_column_name].feature, ClassLabel) |
|
if labels_are_int: |
|
label_list = features[label_column_name].feature.names |
|
label_to_id = {i: i for i in range(len(label_list))} |
|
else: |
|
label_list = get_label_list(raw_datasets["train"][label_column_name]) |
|
label_to_id = {l: i for i, l in enumerate(label_list)} |
|
|
|
num_labels = len(label_list) |
|
|
|
|
|
|
|
|
|
|
|
if args.config_name: |
|
config = AutoConfig.from_pretrained(args.config_name, num_labels=num_labels) |
|
elif args.model_name_or_path: |
|
config = AutoConfig.from_pretrained(args.model_name_or_path, num_labels=num_labels) |
|
else: |
|
config = CONFIG_MAPPING[args.model_type]() |
|
logger.warning("You are instantiating a new config instance from scratch.") |
|
|
|
tokenizer_name_or_path = args.tokenizer_name if args.tokenizer_name else args.model_name_or_path |
|
if not tokenizer_name_or_path: |
|
raise ValueError( |
|
"You are instantiating a new tokenizer from scratch. This is not supported by this script." |
|
"You can do it from another script, save it, and load it from here, using --tokenizer_name." |
|
) |
|
|
|
if config.model_type in {"bloom", "gpt2", "roberta"}: |
|
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path, use_fast=True, add_prefix_space=True) |
|
else: |
|
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path, use_fast=True) |
|
|
|
if args.model_name_or_path: |
|
model = AutoModelForTokenClassification.from_pretrained( |
|
args.model_name_or_path, |
|
from_tf=bool(".ckpt" in args.model_name_or_path), |
|
config=config, |
|
ignore_mismatched_sizes=args.ignore_mismatched_sizes, |
|
) |
|
else: |
|
logger.info("Training new model from scratch") |
|
model = AutoModelForTokenClassification.from_config(config) |
|
|
|
|
|
|
|
embedding_size = model.get_input_embeddings().weight.shape[0] |
|
if len(tokenizer) > embedding_size: |
|
embedding_size = model.get_input_embeddings().weight.shape[0] |
|
if len(tokenizer) > embedding_size: |
|
model.resize_token_embeddings(len(tokenizer)) |
|
|
|
|
|
if model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id: |
|
if sorted(model.config.label2id.keys()) == sorted(label_list): |
|
|
|
if labels_are_int: |
|
label_to_id = {i: int(model.config.label2id[l]) for i, l in enumerate(label_list)} |
|
label_list = [model.config.id2label[i] for i in range(num_labels)] |
|
else: |
|
label_list = [model.config.id2label[i] for i in range(num_labels)] |
|
label_to_id = {l: i for i, l in enumerate(label_list)} |
|
else: |
|
logger.warning( |
|
"Your model seems to have been trained with labels, but they don't match the dataset: ", |
|
f"model labels: {sorted(model.config.label2id.keys())}, dataset labels:" |
|
f" {sorted(label_list)}.\nIgnoring the model labels as a result.", |
|
) |
|
|
|
|
|
model.config.label2id = {l: i for i, l in enumerate(label_list)} |
|
model.config.id2label = dict(enumerate(label_list)) |
|
|
|
|
|
b_to_i_label = [] |
|
for idx, label in enumerate(label_list): |
|
if label.startswith("B-") and label.replace("B-", "I-") in label_list: |
|
b_to_i_label.append(label_list.index(label.replace("B-", "I-"))) |
|
else: |
|
b_to_i_label.append(idx) |
|
|
|
|
|
|
|
padding = "max_length" if args.pad_to_max_length else False |
|
|
|
|
|
|
|
def tokenize_and_align_labels(examples): |
|
tokenized_inputs = tokenizer( |
|
examples[text_column_name], |
|
max_length=args.max_length, |
|
padding=padding, |
|
truncation=True, |
|
|
|
is_split_into_words=True, |
|
) |
|
|
|
labels = [] |
|
for i, label in enumerate(examples[label_column_name]): |
|
word_ids = tokenized_inputs.word_ids(batch_index=i) |
|
previous_word_idx = None |
|
label_ids = [] |
|
for word_idx in word_ids: |
|
|
|
|
|
if word_idx is None: |
|
label_ids.append(-100) |
|
|
|
elif word_idx != previous_word_idx: |
|
label_ids.append(label_to_id[label[word_idx]]) |
|
|
|
|
|
else: |
|
if args.label_all_tokens: |
|
label_ids.append(b_to_i_label[label_to_id[label[word_idx]]]) |
|
else: |
|
label_ids.append(-100) |
|
previous_word_idx = word_idx |
|
|
|
labels.append(label_ids) |
|
tokenized_inputs["labels"] = labels |
|
return tokenized_inputs |
|
|
|
with accelerator.main_process_first(): |
|
processed_raw_datasets = raw_datasets.map( |
|
tokenize_and_align_labels, |
|
batched=True, |
|
remove_columns=raw_datasets["train"].column_names, |
|
desc="Running tokenizer on dataset", |
|
) |
|
|
|
train_dataset = processed_raw_datasets["train"] |
|
eval_dataset = processed_raw_datasets["validation"] |
|
|
|
|
|
for index in random.sample(range(len(train_dataset)), 3): |
|
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") |
|
|
|
|
|
if args.pad_to_max_length: |
|
|
|
|
|
data_collator = default_data_collator |
|
else: |
|
|
|
|
|
|
|
data_collator = DataCollatorForTokenClassification( |
|
tokenizer, pad_to_multiple_of=(8 if accelerator.use_fp16 else None) |
|
) |
|
|
|
train_dataloader = DataLoader( |
|
train_dataset, shuffle=True, collate_fn=data_collator, batch_size=args.per_device_train_batch_size |
|
) |
|
eval_dataloader = DataLoader(eval_dataset, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size) |
|
|
|
|
|
|
|
no_decay = ["bias", "LayerNorm.weight"] |
|
optimizer_grouped_parameters = [ |
|
{ |
|
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], |
|
"weight_decay": args.weight_decay, |
|
}, |
|
{ |
|
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], |
|
"weight_decay": 0.0, |
|
}, |
|
] |
|
optimizer = torch.optim.AdamW(optimizer_grouped_parameters, lr=args.learning_rate) |
|
|
|
|
|
device = accelerator.device |
|
model.to(device) |
|
|
|
|
|
overrode_max_train_steps = False |
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
if args.max_train_steps is None: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
overrode_max_train_steps = True |
|
|
|
lr_scheduler = get_scheduler( |
|
name=args.lr_scheduler_type, |
|
optimizer=optimizer, |
|
num_warmup_steps=args.num_warmup_steps, |
|
num_training_steps=args.max_train_steps, |
|
) |
|
|
|
|
|
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( |
|
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler |
|
) |
|
|
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
if overrode_max_train_steps: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
|
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) |
|
|
|
|
|
checkpointing_steps = args.checkpointing_steps |
|
if checkpointing_steps is not None and checkpointing_steps.isdigit(): |
|
checkpointing_steps = int(checkpointing_steps) |
|
|
|
|
|
|
|
if args.with_tracking: |
|
experiment_config = vars(args) |
|
|
|
experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value |
|
accelerator.init_trackers("ner_no_trainer", experiment_config) |
|
|
|
|
|
metric = evaluate.load("seqeval") |
|
|
|
def get_labels(predictions, references): |
|
|
|
if device.type == "cpu": |
|
y_pred = predictions.detach().clone().numpy() |
|
y_true = references.detach().clone().numpy() |
|
else: |
|
y_pred = predictions.detach().cpu().clone().numpy() |
|
y_true = references.detach().cpu().clone().numpy() |
|
|
|
|
|
true_predictions = [ |
|
[label_list[p] for (p, l) in zip(pred, gold_label) if l != -100] |
|
for pred, gold_label in zip(y_pred, y_true) |
|
] |
|
true_labels = [ |
|
[label_list[l] for (p, l) in zip(pred, gold_label) if l != -100] |
|
for pred, gold_label in zip(y_pred, y_true) |
|
] |
|
return true_predictions, true_labels |
|
|
|
def compute_metrics(): |
|
results = metric.compute() |
|
if args.return_entity_level_metrics: |
|
|
|
final_results = {} |
|
for key, value in results.items(): |
|
if isinstance(value, dict): |
|
for n, v in value.items(): |
|
final_results[f"{key}_{n}"] = v |
|
else: |
|
final_results[key] = value |
|
return final_results |
|
else: |
|
return { |
|
"precision": results["overall_precision"], |
|
"recall": results["overall_recall"], |
|
"f1": results["overall_f1"], |
|
"accuracy": results["overall_accuracy"], |
|
} |
|
|
|
|
|
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps |
|
|
|
logger.info("***** Running training *****") |
|
logger.info(f" Num examples = {len(train_dataset)}") |
|
logger.info(f" Num Epochs = {args.num_train_epochs}") |
|
logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}") |
|
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") |
|
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") |
|
logger.info(f" Total optimization steps = {args.max_train_steps}") |
|
|
|
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process) |
|
completed_steps = 0 |
|
starting_epoch = 0 |
|
|
|
if args.resume_from_checkpoint: |
|
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": |
|
accelerator.print(f"Resumed from checkpoint: {args.resume_from_checkpoint}") |
|
accelerator.load_state(args.resume_from_checkpoint) |
|
path = os.path.basename(args.resume_from_checkpoint) |
|
else: |
|
|
|
dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()] |
|
dirs.sort(key=os.path.getctime) |
|
path = dirs[-1] |
|
|
|
training_difference = os.path.splitext(path)[0] |
|
|
|
if "epoch" in training_difference: |
|
starting_epoch = int(training_difference.replace("epoch_", "")) + 1 |
|
resume_step = None |
|
completed_steps = starting_epoch * num_update_steps_per_epoch |
|
else: |
|
|
|
resume_step = int(training_difference.replace("step_", "")) * args.gradient_accumulation_steps |
|
starting_epoch = resume_step // len(train_dataloader) |
|
resume_step -= starting_epoch * len(train_dataloader) |
|
completed_steps = resume_step // args.gradient_accumulation_stepp |
|
|
|
|
|
progress_bar.update(completed_steps) |
|
|
|
for epoch in range(starting_epoch, args.num_train_epochs): |
|
model.train() |
|
if args.with_tracking: |
|
total_loss = 0 |
|
if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: |
|
|
|
active_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step) |
|
else: |
|
active_dataloader = train_dataloader |
|
for step, batch in enumerate(active_dataloader): |
|
outputs = model(**batch) |
|
loss = outputs.loss |
|
|
|
if args.with_tracking: |
|
total_loss += loss.detach().float() |
|
loss = loss / args.gradient_accumulation_steps |
|
accelerator.backward(loss) |
|
if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1: |
|
optimizer.step() |
|
lr_scheduler.step() |
|
optimizer.zero_grad() |
|
progress_bar.update(1) |
|
completed_steps += 1 |
|
|
|
if isinstance(checkpointing_steps, int): |
|
if completed_steps % checkpointing_steps == 0: |
|
output_dir = f"step_{completed_steps }" |
|
if args.output_dir is not None: |
|
output_dir = os.path.join(args.output_dir, output_dir) |
|
accelerator.save_state(output_dir) |
|
|
|
if completed_steps >= args.max_train_steps: |
|
break |
|
|
|
model.eval() |
|
samples_seen = 0 |
|
for step, batch in enumerate(eval_dataloader): |
|
with torch.no_grad(): |
|
outputs = model(**batch) |
|
predictions = outputs.logits.argmax(dim=-1) |
|
labels = batch["labels"] |
|
if not args.pad_to_max_length: |
|
predictions = accelerator.pad_across_processes(predictions, dim=1, pad_index=-100) |
|
labels = accelerator.pad_across_processes(labels, dim=1, pad_index=-100) |
|
predictions_gathered, labels_gathered = accelerator.gather((predictions, labels)) |
|
|
|
if accelerator.num_processes > 1: |
|
if step == len(eval_dataloader) - 1: |
|
predictions_gathered = predictions_gathered[: len(eval_dataloader.dataset) - samples_seen] |
|
labels_gathered = labels_gathered[: len(eval_dataloader.dataset) - samples_seen] |
|
else: |
|
samples_seen += labels_gathered.shape[0] |
|
preds, refs = get_labels(predictions_gathered, labels_gathered) |
|
metric.add_batch( |
|
predictions=preds, |
|
references=refs, |
|
) |
|
|
|
eval_metric = compute_metrics() |
|
accelerator.print(f"epoch {epoch}:", eval_metric) |
|
if args.with_tracking: |
|
accelerator.log( |
|
{ |
|
"seqeval": eval_metric, |
|
"train_loss": total_loss.item() / len(train_dataloader), |
|
"epoch": epoch, |
|
"step": completed_steps, |
|
}, |
|
step=completed_steps, |
|
) |
|
|
|
if args.push_to_hub and epoch < args.num_train_epochs - 1: |
|
accelerator.wait_for_everyone() |
|
unwrapped_model = accelerator.unwrap_model(model) |
|
unwrapped_model.save_pretrained( |
|
args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save |
|
) |
|
if accelerator.is_main_process: |
|
tokenizer.save_pretrained(args.output_dir) |
|
repo.push_to_hub( |
|
commit_message=f"Training in progress epoch {epoch}", blocking=False, auto_lfs_prune=True |
|
) |
|
|
|
if args.checkpointing_steps == "epoch": |
|
output_dir = f"epoch_{epoch}" |
|
if args.output_dir is not None: |
|
output_dir = os.path.join(args.output_dir, output_dir) |
|
accelerator.save_state(output_dir) |
|
|
|
if args.with_tracking: |
|
accelerator.end_training() |
|
|
|
if args.output_dir is not None: |
|
accelerator.wait_for_everyone() |
|
unwrapped_model = accelerator.unwrap_model(model) |
|
unwrapped_model.save_pretrained( |
|
args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save |
|
) |
|
if accelerator.is_main_process: |
|
tokenizer.save_pretrained(args.output_dir) |
|
if args.push_to_hub: |
|
repo.push_to_hub(commit_message="End of training", auto_lfs_prune=True) |
|
|
|
all_results = {f"eval_{k}": v for k, v in eval_metric.items()} |
|
if args.with_tracking: |
|
all_results.update({"train_loss": total_loss.item() / len(train_dataloader)}) |
|
with open(os.path.join(args.output_dir, "all_results.json"), "w") as f: |
|
|
|
for key, value in all_results.items(): |
|
if isinstance(value, np.float64): |
|
all_results[key] = float(value) |
|
elif isinstance(value, np.int64): |
|
all_results[key] = int(value) |
|
json.dump(all_results, f) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|